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Abstract 
 
In the face of the lower bound on interest rates, central banks have relied on unconventional policy 
tools such as large-scale asset purchases and forward guidance to try to affect long-term interest rates 
and provide monetary stimulus to the economy. Assessing the impact of these measures and 
summarising the overall stance of monetary policy in this new environment has proven to be a 
challenge for academics and central banks. As a result, researchers have worked on modifying current 
term structure models and have adapted them to the current situation of close to zero or even negative 
interest rates. The paper begins by providing a non-technical overview of Leo Krippner's two-factor 
shadow rate model (K-ANSM2), explaining the underlying mechanics of the model through an 
illustrative example. Thereafter, the paper presents the results obtained from calibrating Krippner's K-
ANSM2 shadow rate model to the euro area using genetic algorithms and discusses the pros and the 
cons of using genetic algorithms as an alternative to the optimisation method currently used (Nelder-
Mead optimisation routine). Finally, the paper ends by analysing the strengths and weaknesses of 
using the shadow short rate as a tool to illustrate the stance and the dynamics of monetary policy. 
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1. INTRODUCTION 

Traditionally, the most important indicator for a central bank's monetary policy stance is the policy 

rate. As such, it can be assessed against historical or normative benchmarks such as the Taylor rule to 

gauge the appropriateness of the level of monetary policy accommodation. The convergence of policy 

rates towards a lower bound that is assumed to be close to zero or even in negative territory in 

combination with the adoption of unconventional measures targeting the longer end of the yield curve 

(e.g. large scale asset purchases or various forms of forward guidance on the expected policy rate 

path), however, have impaired the function of policy rates as a summary indicator of a central bank's 

monetary policy stance. In light of this, alternative measures of the central bank's policy stance that 

can help quantify those monetary stimulus measures that go beyond steering the policy rates have been 

proposed. For example, the size of the central bank balance sheet should reflect quantitative easing 

measures, but cannot capture policy measures that are targeted at influencing markets' expectations 

regarding future policy rates and announcement effects.1 By contrast, measures built on financial 

market prices can capture those expectation effects. To capture the monetary policy induced flattening 

of the yield curve, for instance one can simply look at the spread between long- and short-term market 

rates. Nevertheless, this rather rough measure does not provide a continuous stance measure that 

reflects monetary policy in both a conventional and unconventional environment. Alternatively, 

monetary conditions indices (MCI), which typically combine information on real interest rates and 

exchange rates, can be calculated. However, the inclusion of variables such as the exchange rate 

implies that the MCI can be substantially driven by factors outside the control of the central bank, for 

example foreign central banks' monetary policies. Lastly, and most prominently, term structure-based 

shadow short rate (SSR) models such as the one presented here have been proposed to capture 

monetary policy at the lower bound.2 The advantages and disadvantages of this particular measure of 

the monetary policy stance are discussed in the following sections.  

Term structure modelling used to be rather straightforward in the non-zero lower bound (ZLB) 

economic context that prevailed before the global financial crisis. In fact, Gaussian affine term 

structure models (GATSMs), including the popular subclass of arbitrage-free Nelson and Siegel 

models (ANSM), were widely favoured by many academics, researchers, central bankers and private-

sector practitioners. Notwithstanding their popularity and widespread use, GATSMs have one well-

acknowledged downside which was deemed small relative to their benefits in the pre-crisis period. 

That is, the mathematical specifications underlying the stochastic process for the short rate imply non-

zero probabilities of interest rates of any maturity evolving to negative values. However, allowing for 

interest rates to evolve to negative levels in a GATSM model becomes untenable in a ZLB 

environment as the model would no longer fit the observed market yield curve (which is constrained 

by the ZLB). Therefore, the market-calibrated GATSM cannot provide anymore a valid representation 

of the term structure and its dynamics.  

Recently developed models for the shadow rate offer a solution in the sense that on the one hand the 

Gaussian diffusion process for the “shadow” short rate can freely adopt negative values, while on the 

other hand the “ZLB” short rate diffusion process will remain constrained by the “lower bound”. These 

academic developments are essential, as there is no longer a misspecification of the model relative to 

the data being modeled (i.e. the observed market yield curve) and at the same time by virtue of the fact 

that the SSR can take on negative values, the dynamics of the shadow short rate can now reflect the 

effects of non-standard monetary policy measures (like the asset purchase programmes as well as 

                                                            
1 Furthermore, the mapping from the central banks' balance sheet size to market prices and interest rates is uncertain and 

depends on various factors.   
2 A somewhat hybrid, purely data-oriented approach that incorporates both price and quantity measures has been proposed by 

Lombardi and Zhu (2014), who estimate a shadow short rate for the US by pooling together a large dataset of both price and 

quantity variables and summarising this information by extracting common factors through a dynamic factor model. These 

latent factors are then used to construct a shadow federal funds rate, such that this shadow rate is a weighted average of all 

monetary information contained in the original dataset, with weights determined on the basis of the historical correlations.  
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forward guidance). The SSR is one of the outputs from the shadow rate term structure model which 

suggests itself as a means of quantifying the stance of monetary policy in ZLB environments.  

While it is a priori not clear exactly how low the effective lower bound on nominal interest rates is, it is 

widely accepted that interest rates cannot be set arbitrarily low as market participants always have the 

'cash option' of holding cash at a zero nominal interest rate instead of accepting negative interest. The 

strike price of said option then constitutes the lower bound to the interest rate, whereby the existence of 

transaction and storage costs of cash holdings might explain the fact that the actual lower bound is below 

zero. Shadow short rates derived from term structure models rely on the assumption of the presence of 

such a cash option. The shadow short rate then represents the interest rate that would prevail in a 

hypothetical world without this cash option, e.g. a world where cash is not available. As will be 

explained later on in the paper, the K-ANSM (2) model simultaneously estimates the shadow rate (based 

on GATSM principles) and the option effect such that both combined fit the observed market data.  

In this paper we contribute to the existing literature on the shadow rate by testing an alternative 

method to calibrate shadow rate models to market data. More specifically we use genetic algorithms to 

calibrate Krippner’s (2016) two-factor shadow rate model to the euro area OIS swap curve, showing 

that overall the results obtained corroborate those of Krippner (with even slightly improved calibration 

results). We also investigate and confirm Krippner’s finding that the iterated extended Kalman filter 

(IEKF) outperforms the extended Kalman filter (EKF) by providing much more reliable and accurate 

parameter estimations from different starting points, which compensates for the fact that the Nelder-

Mead optimisation routine is known to often result in a “local” optimum. Our empirical tests also 

demonstrate that this compensation is not perfect and thus this is where genetic algorithms may prove 

to be useful when facing new datasets (new regions, other countries or yield curves etc …), where one 

has no idea about the starting values for the parameters. 

The paper is organised as follows: after providing a non-technical overview of Krippner’s term 

structure based shadow rate model in Section 2, we discuss how to calibrate the model to yield curve 

data using genetic algorithms in Section 3; we then go on to discuss in Section 4 results obtained from 

calibrating Krippner’s two-factor shadow rate model, K-ANSM (2), to the Euro area (EA) using 

genetic algorithms as well as the pros and cons of using genetic algorithms as compared to 

currently/commonly used calibration methods. In Section 5 we summarise the strengths and 

weaknesses of using the shadow short rate as a tool to illustrate the stance and the dynamics of 

monetary policy. Finally, Section 6 concludes the paper and Section 7 (technical appendix) provides a 

succinct technical review of the K-ANSM (2) model.  

The paper is designed in such a way as to appeal to two groups of readers: (1) those with prior 

knowledge of term-structure modelling and shadow rate models and (2) readers without such technical 

background knowledge. The latter group might primarily be interested in the practical application of 

the shadow rate model to the fields of macro-economics, monetary policy and financial markets (bond 

option pricing, interest rate risk management …). This group of readers is invited to start by reading 

Section 2 which provides a non-technical overview of the shadow rate model, and then subsequently 

jump to Sections 4 and 5 which in turn discuss the calibration results for the euro area (EA) as well as 

the pros and cons of the shadow rate as a tool to illustrate monetary policy stance. The first group of 

readers, with a background in term-stucture modelling and knowledge of the shadow rate literature, 

will be essentially interested in the new calibration method proposed (based on genetic algorithms) in 

this paper. This group of readers is thus invited to skip the non-technical review and directly start with 

Section 3, which discusses the calibration algorithm in more detail in addition to the yield curve 

dataset used for the calibration, followed by Section 4, which provides the calibration results for the 

Euro Area (EA) and which also discusses the advantages/disadvantages of calibrating with genetic 

algorithms. Section 7 in addition offers a succinct technical refresher of the K-ANSM (2) shadow rate 

model. As the paper is designed to address both readers with and without knowledge of term-structure 

modelling and shadow rate models, reiterations of certain key aspects throughout the paper are 

inevitable. 



5 
 

2. A NON-TECHNICAL OVERVIEW OF THE SHADOW RATE 

The two-factor model of Krippner, commonly referred to as K-ANSM (2), which is used in this paper 

is a term-structure based shadow rate model that has received much attention in the literature. To be 

more specific, Krippner uses an affine term structure model (GATSM) to capture yield curve dynamics 

through time. The term structure of interest rates refers to the relationship between the yields-to-

maturity of a set of bonds (or swaps) and their times-to-maturity. It is a simple descriptive measure of 

the cross-section of bond/swap prices observed at a single point in time. An affine term structure 

model hypothesises that the term structure of interest rates at any point in time is a mathematical 

function of a small set of common state variables or factors. Once assumptions regarding the dynamics 

of the state variables are specified, the dynamics of the term structure are also determined. However, in 

times of negative interest rates, these affine term structure models are not able to take into account the 

lower bound on interest rates. Fischer Black (1995) first introduced the notion of a “zero lower bound” 

on interest rates by explaining that so long as people can hold cash, they would prefer to keep money 

in their mattresses rather than holding financial instruments bearing negative interest rates. In his 

original formulation Black explains that interest rates cannot become negative because of the existence 

of this option for people to switch to holding cash when rates fall below zero. Since then, the 

methodology has been refined and today it allows for a lower bound which is negative. Nevertheless, 

the basic principle remains: the term structure model has to somehow incorporate this “option effect” 

to account for the lower bound on interest rates. In this section, we provide a non-technical description 

of the shadow rate model by illustrating how it works in the context of a specific example. To set the 

scene for the example, we will focus on the period between March-2016 and September-2016 and the 

specific question we will look at is whether and how the shadow rate model picks up on the observed 

flattening of the OIS yield curve during this 6-month period? 

Before starting with a description of the shadow rate model itself, we briefly discuss the interest rate 

context during this 6-month period. Graph 1 below illustrates the market OIS yield curve for a selected 

number of maturities (1M, 3M, 6M, 1Y, 2Y, 3Y, 5Y, 7Y, and 10Y) as observed in March-16 (red-

squares) and in Sep-16 (green-diamonds). We immediately notice that while the OIS curve during this 

6-month period does not move much at the short-end (below 1Y), it flattened for the longer maturities 

(beyond 3Y). The EONIA in this same period basically remained stable (going from -0.30% in March-

16 to -0.33% in Sep-16) as the ECB’s deposit facility rate also remained unchanged at -0.40% 

throughout this 6-month period. If we look at the 10Y zero-coupon rate, it dropped from 0.31% in 

March-16 to 0.04% in Sep-16 thus confirming the observed flattening of the yield curve. Given the 

rigidity of interest rates at the short-end of the yield curve due to the assumed presence of a lower 

bound3, the ECB opted to implement so-called non-standard monetary policy measures which are 

explicitly targeted at the longer end of the yield curve. In the next paragraphs, we will explain how the 

shadow rate model is able to incorporate the information from the yield curve flattening between 

March-2016 and Sep-2016 and how it translates into a shadow rate estimate which falls due to this 

yield curve flattening.4 

The first step towards acquiring an understanding of the shadow rate model is to grasp the basic idea 

underlying term structure models of the yield curve (commonly referred to as General Affine Term 

Structure Models or GATSM). Coming back to our example in Graph 1, the red squares represent the 

observed yield curve rates for maturities 1M, 3M, 6M, 1Y, 2Y, 3Y, 5Y, 7Y, and 10Y in March-16. 

The question is how do we obtain the red-dotted smooth line which seems to connect (although not 

perfectly) the red-squares (i.e. observed market zero-coupon rates)? GATSMs allow us to calculate 

any point on the yield curve depicted by the red-dotted smooth line and even extrapolate below the 1M 

rate for example to obtain the 1week rate or the overnight rate or beyond the 10Y rate to calculate the 

14Y or 20Y interest rates for example. So how do GATSMs enable us to calculate the interest rate for 

any maturity? GATSMs look back through the historical evolution of the observed yield curve points 

                                                            
3 The interested reader can find in Section 5 a more detailed discussion of the choice of the lower bound. 
4 Whether this flattening was monetary policy induced or not will not be discussed in this didactic example.  
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(1M, 3M, 6M, 1Y, 2Y, 3Y, 5Y, 7Y, and 10Y) to extract two underlying factors which are sufficient to 

model the dynamics of the entire yield curve though time: they are referred to as the “level” and 

“slope” parameters. Accordingly, the zero-coupon interest rate for any time to maturity and at any 

given point in time is a function of these two underlying factors. 

 

  

 

In essence, the GATSM captures the dynamics of the entire term structure of interest rates by 

extracting the “level” and “slope” components and thereby generates a time series of “level” and 

“slope” coefficients5. In order for the GATSM to be able to extract these two factors from the 

historical evolution of the yield curve, some assumptions need to be made regarding the behavior of 

the short rate (i.e. overnight rate) that drives the entire yield curve. Loosely speaking, the evolution of 

the short rate in time is assumed to be composed of a long-term trend term and a variance term which 

accounts for random market shocks. Thus, the short rate evolves over time according to some kind of 

general trend, but the model refines this even further by adding two dimensions to this trend: a long-

term mean parameter as well as a mean-reversion parameter. In other words, when the level of the 

short rate deviates too much from its long-term mean, it will revert back to this mean at a speed 

governed by the mean-reversion parameter. This mean-reversion process is hampered in its ability to 

get back to its long-term mean level due to the diffusion or shock term6.  

The second step towards acquiring an understanding of the shadow rate model is to grasp how we go 

from the market yield curves to the “shadow” yield curves. This is a key step and once again we will 

illustrate it with the help of our specific example. In Graph 1, we see that there exists a hidden 

“shadow” yield curve in March-16 (red solid line) which lies well below the market yield curve (red 

dotted line). This “shadow” yield curve is based on the previously discussed GATSM principles and 

thus we can easily extrapolate (i.e. slide along the red solid curve to the blue dot) to obtain the shadow 

short rate (SSR) which according to the model stands at -1.5% in March-16. Before explaining how we 

obtain this “shadow” yield curve, first let us define the shadow short rate (SSR or equivalently shadow 

                                                            
5 In other words, the estimated coefficients are time varying; at each point in time (i.e. each end-of-month) where 

we observe a market yield curve, the GATSM generates “level” and “slope” components specific to that point in 

time. 
6 For the interested reader, the appendix provides a succinct overview of mathematical assumptions underlying the arbitrage-

free Nelson Siegel model (ANSM), a specific subclass of GATSMs, which serves as the basis for the shadow rate model of 

this paper. 
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rate). The shadow rate is commonly defined as the economic interest rate which would prevail in the 

absence of the lower bound on interest rates.7 In our specific example in Graph 1, we have set the 

lower bound at -0.40% (the value of the deposit facility rate) to run the model calculations. That is, we 

assume that the central bank cannot steer money market rates below their current levels by adjusting 

downwards its key policy rate to below -0.40% in order to provide additional monetary stimulus 

because market participants would rather hold cash than accept an interest rate below that lower 

bound. Thus, as the yield curve is constrained at the short end, the central bank needs to resort to non-

standard measures (affecting the longer-end of the yield curve) to implement monetary policy easing. 

If on the other hand, the lower bound constraint was absent, the central bank would have more control 

over the short end of the yield curve and could thus drive money market rates well below their current 

levels by further cutting its policy rates. The shadow rate is hence a theoretical unobserved interest rate 

which by definition has no direct bearing on the short-term financing conditions for companies. 

However, as we will see in the next paragraphs, the shadow rate – although theoretical – is affected by 

and captures the central bank’s non-standard measures that affect the long end of the yield curve. 

In order to understand why the “shadow” yield curve in March-16 (solid red line in Graph 1) lies 

below the market yield curve (dotted red line), we first need to take a short detour and introduce a 

commonly traded financial instrument called the “floor”. An interest rate floor is a derivative contract 

in which the buyer receives payments at the end of each period in which the interest rate is below an 

agreed “strike” interest rate. An example of such a floor would be an agreement to receive a payment 

for each quarter that the EURIBOR 3M rate falls below 1%. In this example, the strike rate is 1% and 

the instrument underlying the floor is EURIBOR 3M. In financial markets, we find that the most 

commonly traded floors are on underlyings corresponding to the EURIBOR 1M, 3M or 6M. The floor 

itself also has a tenor or maturity; for example, a 5Y floor on EURIBOR 3M with a strike rate of 1% 

provides a positive payment at the end of each 3M period (known as the interest rate fixing or reset 

period) over the next 5 years whenever the 3M interest rate is below 1%. So the buyer of a 5Y floor on 

EURIBOR 3M with a strike of 1% could potential get 20 (4 quarters * 5 years) positive payments if 

EURIBOR 3M fixings all fall below 1%. Using financial jargon, we say that the buyer of the floor in 

effect holds a series of 20 “put” options on the interest rate with a strike rate of 1%. Each put option in 

this example covers the 3-month period in between two EURIBOR 3M fixings and is commonly 

referred to as a “floorlet”. If interest rates fall substantially over the next 5 years then this implies that 

each put option or floorlet will automatically be exercised and will result every 3 months in a positive 

payoff to the buyer of the floor. Having given a brief description of the interest rate floor, let us know 

transpose this over to our shadow rate example. 

Let us now imagine the following purely hypothetical example: we buy a 10Y-floor with the 

underlying being the EONIA and a strike rate of -0.40%. Notice that we chose the maturity of the floor 

as being equal to 10Y which is the longest maturity depicted on the yield curve in Graph 1, and the 

strike rate of -0.40% which corresponds to the ECB’s deposit facility rate (which we used to set the 

lower bound on interest rates when running the shadow rate model). The buyer of this floor in effect 

has bought a series of floorlets or equivalently put options with a strike rate of -0.40%. Every day, the 

EONIA’s fixing is observed and if this fixing falls below -0.40% then the buyer of the floor receives a 

positive payment which is equal to the difference between the strike rate of -0.40% and the fixing. If 

the fixing on any given day is above -0.40%, then there is no payment from the floorlet. Given the 

negative interest rate environment prevailing in March-16, with rates hovering not very far from -

0.40% (the strike rate), this floor clearly has value for the buyer and hence the buyer would need to 

pay a premium to purchase this floor. The total value of the floor is in fact equal to the discounted sum 

of the values of the individual floorlets.. Moreover, it is important to note that in the shadow rate 

model itself, the underlying instrument of a given put option is not the future observed EONIA fixing 

but is rather the model’s calculated “shadow” forward short rate. Loosely speaking, in the shadow rate 

model, the value of each individual floorlet/put option is added to the model’s calculated “shadow” 

                                                            
7 Correspondingly, the shadow yield curve can also be interpreted as the one that would prevail in the absence of 

the lower bound on interest rates. 
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forward short rate such that the sum is equal to the market’s forward EONIA rate8. So one of the 

cornerstones of the shadow rate model is to understand how the value of a given individual floorlet 

changes in function of time to maturity and interest rates levels. 

Pursuing our didactical example, suppose we focus on the following particular floorlet: expiry in 3Y 

with strike rate K = -0.40% which is a put option on the “shadow” short rate in 3 years. Graph 2 

illustrates the value of the floorlet in function of the underlying (i.e. ”shadow” short rate) and shows 

for example that if the  “shadow” short rate in 3 years turns out to be  -0.62%, then the payoff to 

exercising the floorlet is 0.22% (that is, the difference between the strike rate of the option which is -

0.40% and the future value of the underlying which is -0.62%). But the option expires only in 3 years, 

and in the meantime the “shadow” short rate can still evolve to even more negative levels; this implies 

that the option value today is worth even more than the option’s “intrinsic value” of 0.22%. The 

additional value is known as the option’s “time value” and reflects the fact that until the floorlet’s 

expiry in 3 years, “shadow” interest rates could potentially fall even lower which would imply that the 

future payoff of the option would be higher.9 Conversely, a floorlet that expires e.g. in one day would 

have virtually no additional time value as the probability for an unexpected downward change in the 

time remaining is very low.  

 

 

As previously mentioned, the example of the floorlet is purely didactical and serves to only illustrate in 

a non-technical manner the so-called “option effect” embedded in the shadow rate model. Moving on 

to the model itself, Graph 3 below illustrates the evolution of the market forward OIS curve between 

March-16 and Sep-16 (the solid red and green lines respectively). Lying underneath these forward 

market OIS curves are the “shadow” forward OIS curves for the same period (the dotted red and green 

lines respectivey). The difference between the forward market OIS and “shadow” forward OIS curves 

corresponds to the model’s calculated forward option effect. For example and as illustrated in Graph 3, 

for the 3Y maturity the forward market OIS rate fell from -0.10% in March-16 to -0.30% in Sep-16 

while the “shadow” forward OIS rates fell from -0.62% to -1.33% during the same period. In March-

16, the difference between the forward market OIS rate (-0.10%) and the “shadow” forward OIS rate (-

0.62%) was 0.52% which is exactly equal to the forward option value. Using a similar reasoning for 

Sep-16, we can observe that the gap between between the forward market OIS rate (-0.30%) and the 

“shadow” forward OIS rate (-1.33%) was 1.03%, exactly the value of the forward option effect.   

                                                            
8 The mathematical details regarding how the option effect is embedded into the shadow rate model are covered in the 

technical appendix (Section 7). 
9 Of course, the shadow short rates could also rise in the meantime. However, the payoff risks are asymmetric, as the option 

value in the worst case becomes zero, whereas the positive payoffs are theoretically unlimited. 
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The option effect has thus increased from March-16 to Sep-16 and this is due to the fact that the 

model’s calculated “shadow” forward EONIA rate has dropped from -0.62% to -1.33% during this 

same period leading to a higher expected value of the put option (see Graph 2 to visualise the impact 

using once again our didactial example of the floorlet where we observe the option value increasing 

from 0.52% to 1.03%). The same reasoning applies to the other points or maturities along the yield 

curve; for example, the model’s calculated “shadow” forward rate for the 3M maturity also dropped 

substantially from March-16 (-1.42%) to Sep-16 (-2.32%) even though the 3M spot market rate has not 

changed. This is because the calculated 3M “shadow” forward rates are computed based on the 

model’s extracted “level” and “slope” factors in March-16 and Sep-16 respectively, which take into 

account the observed flattening on the longer end of the yield curve during this period. The option 

value for this 3M maturity increases because as the “shadow” forward EONIA drops, the option gains 

in intrinsic value. The increase in the option value compensates for the drop in the “shadow” forward 

rate. This leads us to the conclusion that the area between the forward market OIS curve and the 

“shadow” forward OIS curve is explained by the option effect. This is a key aspect of the shadow rate 

model, which is worth summarising at this point: the model’s forward “option effect” when added to 

the “shadow” forward OIS curve enables us to get back to the market forward OIS curve. Given that 

the shadow rate model is calibrated to actual market data, we can therefore safely add that the model is 

calibrated in such a way that the calculated forward option effect when added to the “shadow” forward 

OIS curve (which is itself based on GATSM extracted “level” and “slope” parameters) enables us to 

obtain a fit to the observed market OIS data10, i.e. the model simultaneously estimates the shadow 

yield curve and the option effect such that both combined fit the observed data. This also implies that 

when observed market rates are far above the lower bound – that is when the lower bound is "not 

binding" – the shadow yield curve coincides with the observed market yield curve as the option value 

is zero. Thus, in times when the lower bound is not binding, the shadow short rate closely tracks the 

observed EONIA, making the shadow short rate a measure that is applicable both in conventional and 

unconventional monetary policy environments. Focusing now only on the “shadow” short rate (i.e. the 

two blue dots in Graph 1 representing the shortest maturity on the yield curve), the workaround which 

enables the shadow rate model to be calibrated to observed market yield curve data (which is 

constrained by the lower bound) while at the same time allowing the "shadow" short rate to take on 

negative values is illustrated by the following equation: 

                                                            
10 To be specific, Krippner has opted to calibrate the shadow rate model to the zero-coupon yield curve rates instead of the 

forward rates. The interested reader will find more details about the calibration dataset and algorithm in Section 3 as well as 

in the technical appendix in Section 7. 
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𝑟(𝑡) = 𝑚𝑎𝑥{𝑟𝐿 , 𝑟(𝑡)} = 𝑟(𝑡) + 𝑚𝑎𝑥{𝑟𝐿 − 𝑟(𝑡), 0} 

where 𝑟(𝑡) is the actual market-observed short rate which is subject to the lower bound constraint 

(denoted by 𝑟𝐿) and 𝑟(𝑡) is the non-observable "shadow" short rate (i.e. the two blue dots in Graph 1). 

Thus, the shadow short rate 𝑟(𝑡) can be viewed as the short rate that would prevail in the absence of 

the lower bound on nominal interest rates. The shadow short rate 𝑟(𝑡) is estimated using GATSM 

“level” and “slope” factors while the value to the option-component 𝑚𝑎𝑥{𝑟𝐿 − 𝑟(𝑡), 0} reflects the 

difference between the lower bound and the “shadow” short rate11. What else can affect the option’s 

value and thus the shadow rate besides a flattening of the observed market yield curve? As the graph 

below illustrates, the option’s value is strongly affected by its strike rate. Coming back once again to 

our didactical example of the floorlet, and as illustrated in Graph 4 below, setting the strike rate of the 

option to -0.20% instead of -0.40% will lead to a higher option value for a given level of the 

underlying rate. In fact, the pricing/value curve of the option shifts upwards from the blue dotted curve 

(corresponding to a strike rate of -0.40%) to the solid blue curve (corresponding to the strike rate of -

0.20%). For example, if the underlying “shadow” rate is currently at -0.62%, then it makes intuitive 

sense that the option value increases because it has more intrinsic value for this level of the underlying 

”shadow” rate and thus we say that the option becomes further “in-the-money” (where the strike price 

becomes more favorable in relation to the current underlying price). If we now apply the above 

reasoning to our actual shadow rate model then it becomes clearer why the choice of the lower bound 

will have a significant impact on the model’s forward “option effect”: as the lower bound is set to a 

less negative level (i.e. from -0.40% to -0.20%) then the forward “option effect” increases in value 

across all maturities which in turn generates a lower forward shadow yield curve. But if the forward 

“shadow” yield curve shifts downwards, then this implies that the shadow short rate (SSR) falls as 

well.   

 

 

 

Graph 5 below illustrates how setting the lower bound at -0.20% instead of -0.40% has resulted in 

lower forward “shadow” rates across all maturities in Sep-16. As a consequence, the shadow short rate 

                                                            
11 For points/maturities other than the spot “shadow” short rate (i.e the forward “shadow” rates), the option 

effect/component is a more complex mathematical function (see Section 7 for the details).  
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(SSR) estimate itself in Sep-16 is estimated at -3.51% when using a lower bound of -0.20% as opposed 

to -2.42% when setting the lower bound to -0.40%. 

 

 

 

In fact, one of the fundamental characteristics of Krippner’s two factor model is that when the lower 

bound is set to be less negative (i.e. closer to zero) it tends to capture earlier and reflect more strongly 

the observed movements of the market yield curve as compared to when running the model with a 

more negative lower bound whereby the option effect is less pronounced. Graph 6 below illustrates 

this point and it shows the evolution of the euro area shadow rate since Dec-11 (when shadow rates 

first started to become negative) with a lower bound of 0% and also with a lower bound of -0.40%. 

The graph also plots the evolution of the 10Y – 3M OIS market yield spread (a possible proxy for the 

“slope” of the market yield curve) and the 3M OIS market yield (taking this as a proxy for the “level” 

of the market yield curve). The graph is further broken down into different periods characterised by 

either a flattening/steepening of the yield curve and/or a level change in the yield curve. One clearly 

sees that when the shadow rate model is run with a lower bound of 0% instead of -0.40%, it is more 

sensitive to and better reflects changes to the market yield curve’s observed level and slope “proxy” 

parameters. For an assumed lower bound of -0.40%, the estimated shadow rate does not deviate 

meaningfully from EONIA until late 2015, as the lower bound only becomes binding afterwards, 

implying a positive value of the cash option. Conversely, for an assumed lower bound of 0% the cash 

option is "in the money" already by mid-2012 and the estimated shadow rate can pick up on yield 

curve movements relatively early.  
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Although we chose to provide a non-technical summary of the shadow rate model in this section by 

focusing on a specific period (namely from March-16 to Sep-16) during which we observed a 

flattening of the OIS market yield curve and explained how the model produces a decrease in the 

shadow rate, the same conceptual framework also applies in the case whereby the OIS market yield 

curve experiences a downwards parallel shift. In the case of a downwards parallel shift or even a 

combination of a downwards parallel shift and flattening, the shadow rate should also in principle fall 

as a result of the yield curve movement. Conversely, in periods where we observe a steepening, or 

even a combination of an upwards parallel shift and steepening of the OIS market yield curve, the 

shadow short rate (SSR) should consequently increase. We therefore conclude this section by 

acknowledging that the shadow short rate (SSR) is reactive to changes in both the level and the slope 

(flattening/steepening) of the OIS market yield curve. Section 5 discusses in more detail the link 

between such yield curve changes and monetary policy, namely the advantages/disadvantages of the 

shadow rate as a stance indicator of monetary policy.   

 

3. CALIBRATING THE SHADOW RATE MODEL 

3.1 THE CALIBRATION DATASET 

In this sub-section, we provide a succinct description of the dataset used to calibrate Krippner’s two 

factor K-ANSM (2) shadow rate model. Graph 7 below illustrates the movements of the EA OIS swap 

curve (zero-coupon rates) from June 2002 (the beginning of the sample period) to February 2017 (the 

end of the sample period). As euro area OIS markets were generally not well developed in the early 

years of the monetary union, reliable data at least for the longer maturities is not available pre-2006. 

We therefore only use OIS data from 2006 onwards and apply the percentage evolution of Euribor 

swap rates before January 2006 to back-fill the OIS swaps dataset to June 2002. Generally, as the 

overnight swap contracts only involve the exchange of net payments and no principal, OIS rates can be 

seen as risk-free and thus can better reflect monetary policy than for example government bond yields, 

which might mirror other developments, e.g. with regard to countries' credit risk. Over the sample 

period, the EA OIS curve has shifted down materially, resulting in a relatively flat curve up to the two 

year maturity in February 2017 with most yields (up to 7 years maturity) in negative territory. A 
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clearly inverted swap curve with swap rates as low as -0.47% at the 3 year maturity was observed at 

the end of June 2016. The K-ANSM (2) model aims to capture the movements of the OIS swap curve 

through time by extracting two hidden factors, commonly referred to as the “level” and “slope” 

components of the yield curve. A mathematical algorithm (the Kalman filter) extracts these hidden 

yield curve components/factors, which vary through time, in such a way so as to obtain the best fit 

with the observed market yield curve data.   

 

 

 

THE CALIBRATION ALGORITHM 

The model’s underlying state variables/factors are estimated using a Kalman filter approach, which is 

useful in situations such as this one, where the underlying state variables are not directly observable. In 

the particular case of the two factor model, the first state variable can be interpreted as the “level” 

component of the yield curve while the second state variable represents the yield curve’s “slope” 

component. The key to estimating these “hidden” factors lies in the relationship between the bond 

prices and the underlying state variables. Indeed, the calibration algorithm begins with an observed 

system of equations called the measurement system; this system represents exactly this affine 

relationship between market zero-coupon rates (which is a simple logarithmic transformation of the 

bond price function) and the unobserved state variables. A second, unobserved system of equations 

called the transition system describes the dynamics of the state variables as they were originally 

formulated in the model (i.e. the process for the short rate). Together, the measurement and transition 

equations represent what is called the state-space form of the model. Once the initial conditions (for 

the state variables and state variance matrix) have been specified (the so-called “priors”) and given a 

set of starting values for the model parameters (which define the stochastic process for the short rate) 

to be optimised, the Kalman filter then uses this state-space formulation to recursively make inferences 

about the unobserved values of the state variables (transition system) by conditioning on the observed 

market zero-coupon rates (measurement system). These recursive inferences are then used to construct 

and maximise a log-likelihood function to find an optimal parameter set for the system of equations 

[see Section 7 for a mathematical description of the shadow rate model]. The addition of the "option" 

component introduces non-linearity in the Kalman filter's measurement equations, and hence the 

calibration of the K-ANSM (2) model requires a non-linear Kalman filter. 
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To take into account non-linearities in the Kalman filter's measurement equation, a commonly used 

method is to use the extended Kalman filter (EKF) which has been employed namely by Christensen 

and Rudebusch (2013a,b, 2014) and Wu and Xia (2013, 2014). The EKF effectively calculates a first-

order Taylor approximation of the non-linear interest rate function around the best available estimate 

of the state variable vector. Krippner (2015a) points out that using the EKF within an optimisation 

algorithm often results in a likelihood value and parameter estimates that can be greatly improved on 

by using the iterated extended Kalman filter (IEKF) within the same optimisation algorithm. The 

iterated extended Kalman filter improves the linearisation of the extended Kalman filter by recursively 

modifying the center point of the Taylor expansion. This reduces the linearisation error at the cost of 

increased computational requirements. Krippner (2015a) demonstrates that the IEKF-based 

optimisation obtains a materially higher value of the likelihood function along with materially different 

parameter estimates as compared to the EKF-based optimisation, which hence justifies Krippner’s 

choice of the iterated extended Kalman filter (IEKF) for calibrating the shadow rate model.  

As described above, in order to compute the “optimal” model parameters, the Kalman filter algorithm 

is embedded within an optimisation routine which seeks to obtain those parameters which provide the 

best possible fit to the observed yield curve data. A very commonly used algorithm, which is also 

employed by Krippner, to maximise the model’s fit to the observed yield curve, is the Nelder-Mead 

simplex search method of Lagarias et al (1998). One known weakness of this algorithm is that it 

provides a “local” solution (for the optimal model parameters) meaning that the algorithm returns a 

local optimum of the mathematical function near its starting point (for the model parameters) set at the 

beginning of the algorithm’s run. As mentioned previously, Krippner (2015a) finds that in practice the 

IEKF outperforms the EKF in that it provides much more reliable and accurate parameter estimations 

from different starting points. However, it is not clear to what extent this increased stability stemming 

from using the IEKF compensates for the fact that the optimisation routine being used is known to 

often result in a “local” optimum. This is where the use of genetical optimisation algorithms may 

prove to be useful. 

A genetic algorithm (GA) is a method for solving both constrained and unconstrained optimisation 

problems based on a natural selection process that mimics biological evolution. Genetic algorithms 

embed a probabilistic search which is founded on and mimics the idea of an evolutionary process. The 

GA procedure is based on the Darwinian principle of survival of the fittest. An initial population is 

created containing a predefined number of individuals (or solutions), each represented by a genetic 

string (incorporating the variable’s information). Each individual has an associated fitness measure, 

typically representing an objective value. The concept that fittest (or best) individuals in a population 

will produce fitter offspring is then implemented in order to reproduce the next population. Selected 

individuals are chosen for reproduction (or crossover) at each generation, with an appropriate mutation 

factor to randomly modify the genes of an individual, in order to develop the new population. The 

result is another set of individuals based on the original subjects leading to subsequent populations 

with better (min. or max.) individual fitness. Therefore, the algorithm identifies the individuals with 

the best optimismaximising fitness values, and those with lower fitness will naturally get discarded 

from the population. Ultimately this search procedure finds a set of variables that optimises the fitness 

of an individual and/or of the whole population. As a result, the GA technique has advantages over 

traditional non-linear optimisation techniques which tend to be sensitive to the initial starting point and 

which may end up being trapped in local minima/maxima. The next section presents the resuls of 

calibrating Krippner’s two-factor shadow rate model to the Euro area using genetic algorithms. 
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Box: GENETIC ALGORITHMS 

 Before explaning the various steps that a typical genetic algorithm goes through to optimise a mathematical 

function, some preliminary terminology needs to be introduced. The function that the algorithm tries to optimise 

is called the "fitness function" and in our case it is the log-likelihood function which is given by Log_LKL=

𝑓{𝜙, 𝑘11, 𝑘12, 𝑘21, 𝑘22, 𝜃1, 𝜃2, 𝜎1, 𝜎2, 𝜌12 , 𝜎𝜂} (see the technical appendix in Section 7 for more details). An 

"individual" is any point (input vector in our case) to which you can apply the fitness function and the value of 

the fitness function for a given individual is known as its "score". An individual is also commonly referred to as a 

"chromosome" and the vector entries of an individual as the "genes". A "population" is an array of individuals 

and as will be explained below during each iteration of the genetic algorithm a series of computations are made 

on the current population to produce a new population. Each successive population is commonly referred to as a 

new "generation". 

 

Typically, a genetic algorithm goes through the following steps to optimise the fitness function (in our case this 

means finding the 11 input parameters that maximise the log-likelihood function): 

 

1) The algorithm begins by creating a random initial population. 

 

2) It then scores each individual in the current population by computing its fitness value. It ranks them by fitness 

value and subsequently retains only a select sub-group comprised of the fittest individuals, known as the 

"parents", to be able to produce the next generation.  

 

3) The genetic algorithm creates three types of "children" which will form the next generation: 

 

a) "Elite children" are the individuals/parents in the current generation with the best fitness values. These 

individuals automatically survive to the next generation. 

b) "Crossover children" are created by combining the vector entries of a pair of parents.  

c) "Mutation children" are created by introducing random changes, or mutations, to a single parent's vector 

entries or genes. 

 

The algorithm then proceeds by replacing the current population with the children to form the next generation. 

 

In an iterative manner, the algorithm creates a sequence of new populations/generations and it finally stops when 

one of the stopping criteria is met. Most often, the genetic algorithm is set up such that the algorithm stops if the 

relative change in the best fitness function value is less than or equal to a predefined user tolerance level (usually 

set at 1e-6).  

 

What makes genetic algorithms (GAs) a good global optimisation tool? 

 

(1)  Most other algorithms are serial and can only explore the solution space to a problem in one direction at a 

time wheras GAs can explore the solution space in multiple directions at once. If one path turns out to be 

unfruitful, they can easily eliminate it and continue work on more promising avenues, giving them a greater 

chance at each step of finding the global optimal. 

(2) A notable strength of genetic algorithms is that they perform well in problems for which the solution space is 

complex - ones where the fitness function is discontinuous, noisy, changes over time, or has many local optima. 

GA has proven to be effective at escaping local optima and discovering the global optimum in even a very 

rugged and complex fitness landscape. 

(3) Another aspect in which genetic algorithms prove particularly efficient is in their ability to manipulate many 

parameters simultaneously (when the dimension of the solution space is high). 
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4. EMPIRICAL RESULTS FOR THE EURO AREA 

 

Graph 8 below plots the shadow rate for the EA over the period Dec-02 to Feb-17 when calibrating the 

model using genetic algorithms with different scenarios for the lower bound: 0%, -0.20%, -0.40%, and 

-0.60% (for a discussion of the choice of the lower bound, see Section 5). The model was calibrated to 

the euro area OIS swap curve12 using monthly data on the following yield curve tenors: 1M, 3M, 6M, 

1Y, 2Y, 3Y, 5Y, 7Y, and 10Y. Two stylised facts emanate from the genetically calibrated shadow rate 

model, GA K-ANSM (2), as illustrated in Graph8. First, the GA K-ANSM (2) model seems to track 

the EONIA rate fairly well for all chosen lower bound calibrations in a non-ZLB environment, i.e. 

until the second quarter of 2012, when the lower bound for the first specification (LB = 0%) becomes 

binding.13 EONIA is often used to proxy the ECB's interest rate policy since it conveniently includes 

the switch of the ECB's effective policy rate from the interest rate on its main refinancing operations 

(MRO) to the deposit facility rate (DFR) that followed the increase in the central banks' excess 

liquidity post October 2008, when tender operations with fixed rate full allotments were introduced.14 

Second, Graph 8 shows that the choice of the lower bound used to calibrate the GA K-ANSM (2) 

model results in substantially different estimates of the shadow rate. In fact, the shadow rate estimates 

in Feb-2017 vary from -0.5% (when using a lower bound of -0.60%) to as low as -5.3% (when using a 

lower bound of 0%). Choosing an appropriate level for the lower bound is thus a key decision resulting 

in potentially very different estimates of the shadow rate. This raises the question of what explains the 

model’s sensitivity to the choice of the lower bound. 

The answer to this question does not rest with the type of calibration algorithm used, but is rather 

linked to an inherent characteristic of the model: the value of the cash option. To illustrate this point, 

Graph 9 below plots the value of the cash option (using a forward start/tenor of one year as an 

example) for each of the different lower bounds chosen. Even by simple visual inspection of Graphs 8 

and 9, one can easily deduce that the higher is the lower bound, the higher is the value of the cash 

option effect. As explained in Section 2, given that the market-calibrated short rate is the sum of the 

shadow rate and the cash option’s value, in the case of a lower bound set at 0%, the highly positive 

intrinsic value of the cash option compensates for the model’s estimated (based on the “level” and 

“slope” parameters) highly negative shadow short rate  (-5.3% in Feb-2017) such that the sum equals 

the observed market short rate.This also makes sense intuitively especially if one thinks of the model’s 

lower bound as the strike price of the cash option, i.e. the interest rate that this option guarantees upon 

exercise (e.g. 0% in the classical framework of switching to cash without any transaction and storage 

costs). The value of the option at the time of exercise should then be the difference of the option’s 

strike rate and the ”shadow” short rate (or zero if  the “shadow” short rate lies above the strike rate). 

From a forward looking perspective, for any given probability distribution that assigns non-zero 

probabilities to OIS rates falling below the strike price, the value of the option will increase with the 

strike price, as a higher cumulative probability will be assigned to an outcome in which rates fall 

below the strike price (which would trigger exercising this option). 

                                                            
12 We use Eonia based OIS rates for the period after January 2006 and apply the percentage evolution of Euribor swap rates 

before January 2006 to back-fill the OIS swaps dataset to June 2002 (see Section 3 for more details on the dataset). 
13 That is, although EONIA was still trading above 0%, non-zero probabilities are assigned to OIS rates below the lower 

bound, which implies a positive value of the cash option resulting in negative values of the respective shadow rate. This was 

intensified by the deposit facility rate cut to 0% in July 2012, which shifts a considerable part of the probability distribution 

into negative territory.  
14 While the Eurosystem had been operating under a structural liquidity deficit pre-October 2008, the introduction of tender 

operations with fixed rate full allotments created an environment of excess liquidity in which banks are incentivised to lend 

overnight to other banks at a small spread over the DFR. Excess liquidity increased considerably with the allotment of longer-

term refinancing operations and in partular with the start of the asse purchases under the expanded asset purchase programme.   
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A key question emerging from this analysis is thus: what is an appropriate level to choose for the lower 

bound? Without further analysis, one can already notice that by simply setting the lower bound at the 

minimum observed value of the DFR over the calibration sample history, -0.40%, the resulting shadow 

rate estimate stands at -1.8% in Feb-2017. Although subjective, this appears to be a more reasonable 

estimate of the shadow rate from a monetary policy perspective. At the same time, this shadow rate 

estimate shows little variation before the start of the ECB's expanded asset purchase programme and 

thus seems to capture earlier unconventional monetary policies insufficiently (e.g. forward guidance, 

TLTROs).  

 

 

It is important at this point to exclude any possible distorting effects that the choice of the calibrating 

algorithm could have on the cash option value and thus also on the shadow rate estimate itself. In other 

words, do the more commonly used Nelder-Mead simplex algorithm implemented by Krippner and the 

genetic algorithm tested in this paper provide similar results? Table 1 below provides a comparison of 

the quality of the calibration between the two approaches. As can be seen, both the optimised log-
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likelihood measure for the whole model and the RMSEs (root mean-squared errors) for the different 

maturities suggest that the results indeed are fairly similar. 

 

 

 

The results shown under the column heading “Nelder-Mead” use as a starting point for the parameters 

to be calibrated an already optimised set of values for the euro area15. The results shown under the 

column heading “Genetic Algorithm” use an arbitrary starting point value which assumes no prior 

knowledge of the dataset to which the shadow rate model is being calibrated. In fact, we have set the 

starting value for all parameters as being equal to 0.001 except for the 2x2 matrix 𝑘 (which represents 

the mean-reversion of state variables – see Section 8 for a more technical description). For the mean-

reversion matrix k, we randomly generated a positive-definite matrix, which in our case gave us k 

= [
0.14842 0.09308
0.09308 0.08504

] . 

Overall, the genetic algorithm provides a slightly superior calibration across all scenarios for the lower 

bound as the value of the optimised log-likelihood is higher in all cases. The value of the optimised 

log-likelihood function is the yardstick commonly used to ascertain the quality of the calibration; in 

other words, the higher the log-likelihood value resulting from the optimisation algorithm, the better 

the model captures the movements of the yield curve over time (in addition to its fit at any given point 

in time). In addition, the average quality of the fit to the observed yield curve can be measured by the 

root mean-squared error (RMSE) statistic. As Table 1 clearly illustrates, both the Nelder-Mead and the 

genetic calibration algorithms provide a similar fit overall (with a slightly better fit obtained 

nevertheless by the genetic algorithm across the different lower bounds and yield curve tenors). Thus, 

to summarise, the alternative calibration technique (genetic algorithms) tested in this paper 

corroborates overall the empirical results obtained by Krippner and at the same time also confirms 

Krippner’s stated advantage of using the iterated extended Kalman filter (Krippner 2015a). 

Having demonstrated the relative convergence of both calibration algorithms, we can safely conclude 

that the highly positive value obtained for the option effect (and thus the highly negative shadow rate) 

                                                            
15 The starting values come from the already optimised set of parameters for the euro area (daily dataset) as published on 

Krippner’s website: EA_BB_Govt_BB_OIS_rL125_Daily_20160429. 

Table 1

Nelder- Genetic Nelder- Genetic Nelder- Genetic Nelder- Genetic 

Mead Algorithm Mead Algorithm Mead Algorithm Mead Algorithm

Log-likelihood 7768 7788 7953 7968 7968 8000 7889 7983

RMSE (*)

1M 17.9 17.6 16.3 15.8 15.5 15.2 16.1 15.0

3M 14.5 14.1 11.2 10.9 10.0 9.9 10.9 9.7

6M 13.1 12.9 8.2 8.1 6.1 6.4 7.4 6.4

1Y 15.9 15.9 11.5 11.7 10.1 10.4 10.8 10.4

2Y 18.1 18.1 15.6 15.7 15.1 15.0 15.4 14.9

3Y 17.0 16.9 15.6 15.6 15.5 15.4 16.2 15.2

5Y 12.0 11.6 10.7 10.6 10.9 10.7 12.3 10.4

7Y 8.8 8.1 6.5 6.3 6.6 6.0 8.1 5.3

10Y 11.9 11.2 12.5 12.6 13.2 13.2 14.5 13.5

(*) Values expressed in basis points (bps) Source: ECFIN

LB = 0% LB = -0.20% LB = -0.40% LB = -0.60%
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when the lower bound is set to zero is not linked to the calibration of the model but rather to intrinsic 

economic phenomena being captured by the cash option effect (see Section 5). This being said, it is 

nevertheless worthwhile diving a bit more deeply into the pros and cons of calibrating the shadow rate 

model using genetic algorithms versus the traditional Nelder-Mead algorithm. While the Nelder-Mead 

algorithm is known to reduce the computational burden as it converges quickly to the local optimum 

solution, it is in principle prone to estimation errors as it often tends to result in local optimum 

solutions and is thus relatively more sensitive to the starting point assumptions. The genetic algorithm, 

by contrast, searches the entire solution space testing far out points to exclude that the global optimum 

maybe lying somewhere in a far out corner of the complex solution space. Therefore it also guarantees 

that the end result is not sensitive to the choice of the starting parameters set prior to launching the 

calibration algorithm. However, there are two documented disadvantages to using genetic algorithms. 

The first weakness relates to the fact that although they are efficient in searching a complex, multi-

dimensional solution space to find the region near the most likely global optimum point, once they 

reach this region they have difficulties in converging to the exact final global optimal point within this 

sub-region. Second, genetic algorithms present a significant computational burden and thus are very 

time consuming to run.  

To overcome these shortcomings, while keeping the favourable properties of both algorithms, we 

decided to embed a hybrid scheme into the genetic algorithm which works as follows: the genetic 

algorithm first searches through the entire solution space (even in far out regions of the solution space) 

to seek the region which should contain the global optimum (thereby testing and excluding possible 

distant local optimum points); once the genetic algorithm reaches the region near the global optimum 

point, we switch to the Nelder-Mead algorithm which converges more quickly to the optimum 

solution. Thus, while making use of the Nelder-Mead algorithm's faster convergence, we also 

eliminate its main weakness, i.e. its sensitivity to the starting point assumptions. To confirm this, we 

also tested the calibration of the K-ANSM (2) model using the traditional Nelder-Mead algorithm and 

also using the same “arbitrary” starting point values as for the genetic algorithm described previously; 

the calibration results turned out significantly poorer this time: the values of the log-likelihood 

function obtained were 7707, 7223, 6901, 6857 respectively for the various lower bounds 0%, -0.20%, 

-0.40%, and -0.60%. For these same “arbitrary” starting values, the hybrid genetic algorithm 

converged well to obtain a good calibration fit and relatively high log-likelihood values (as 

demonstrated in Table 1). Hence, although our tests confirm that the IEKF outperforms the EKF by 

providing much more reliable and accurate parameter estimations from different starting points 

(compensating for the fact that the Nelder-Mead optimisation routine is known to often result in a 

“local” optimum), our tests have also shown that there are limits to this compensation. This is where 

using a hybrid-genetic algorithm approach may prove to be very useful: in cases where one needs to 

calibrate the shadow rate model to new datasets (new regions, other countries or yield curves etc …) 

when the starting point assumptions are unknown or in the presence of substantial market events and 

movements. In such cases, one only needs to set arbitrary starting values for the parameters to be 

optimised and the hybrid-genetic algorithm should converge to obtain a good fit to the market dataset. 

Unfortunately, the computational burden of the hybrid-genetic algorithm still remains high compared 

to the simple Nelder-Mead algorithm. 

Finally, another useful and complementary way of establishing the reliability of calculated model 

parameters and the resulting estimated level of the shadow rate is to look at the size of the confidence 

intervals produced by the model. Graph 10 below illustrates the 95% confidence intervals for the 

estimated shadow rate when calibrated to the euro area using the hybrid-genetic algorithm and a lower 

bound of -0.40%. As the graph clearly illustrates, the confidence band around the estimated shadow 

rate is quite narrow in the period from Dec-02 to Dec-15; afterwards, it starts to widen as the shadow 

rate dips more deeply into negative territory, i.e. when the cash option’s value becomes more positive 

and its effect on the shadow rate relatively more important. In other words, the fact that the cash option 

that has to be taken into account in the measurement equation of the Kalman filter adds another layer 

of model complexity (and non-linearity) and thus broadens the confidence band. Nonetheless, overall, 

it is reassuring to see that the shadow rate estimates obtained from running the hybrid-genetic 
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calibration algorithm and using a lower bound of   -0.40% (reflecting the minimum observed value of 

the DFR in the calibration sample history) lie within relatively tight confidence bands. 

 

 

5. THE SHADOW RATE AS A MEASURE OF THE MONETARY 

POLICY STANCE  

 

In the presence of the lower bound of interest rates, central banks have increasingly turned to 

unconventional monetary policies targeting the long end of the term structure. Shadow rates derived 

from term-structure models can capture those effects along the yield curve and try to quantify the 

monetary stimulus implied by measures beyond variations of the policy rates as they boil down 

monetary policy actions into one estimated number. Generally, this intuitiveness also represents a 

major advantage of the SSR concept. The shadow rate can also be used as a time series in further 

analysis instead of the restricted policy rate.16 Nonetheless, the fact that the SSR is a purely 

hypothetical rate implies limits for its use in economic inference, as for example a decline in the 

shadow rate has no obvious impact on the short-term financing conditions of enterprises, which still 

face the lower bound constrained rates.  

The most important drawback of the shadow rate, however, is its sensitivity to the chosen model-

specification. For illustrative purposes, Graph 11 plots shadow rate estimates for the euro area by Wu 

and Xia (2016), who use a three-factor model and a time-varying lower bound that follows the ECB's 

deposit facility rate, and from the two-factor model by Krippner (2016) (with a lower bound of 

0.125%) as well as from our two-factor Hybrid-GA model (with an assumed lower bound of -0.40%). 

The results vary considerably, in particular depending on the number of factors included in the model 

and the assumed or endogenously estimated lower bound. Further discrepancies can arise from the 

estimation method, the maturity spectrum included in the estimations and the yield curve data to which 

                                                            
16 To this end, Wu and Xia (2014) estimate a monetary policy VAR in which they replace the Federal Funds rate in the years 

that the lower bound was binding with their SSR estimates and show, using impulse response analyses, that the effects of the 

shadow rate on macroeconomic variables are similar to those of the federal funds rate. 
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the model is calibrated.17  Using three factors, as is conventional in the term-stucture literature, allows 

for more flexibility in the model and thus leads to a better model-fit for the short- and mid-term 

maturity spectrum, thereby improving the overall model-fit. However, this might impair the shadow 

rate's ability to capture unconventional monetary policies that are predominantly targeted at the long 

end of the yield curve. To this end, Krippner (2015b) compares his model specification with the 

Wu/Xia (2015) shadow rate for the United States and concludes that the two-factor model's dynamics 

are more consistent with the Federal Reserve's unconventional monetary policies.    

 

 

 

The second major source of sensitivity is the choice of the lower bound. To illustrate this, Graph 12 

plots again the shadow rate estimates derived from the hybrid GA model for a range of lower bounds 

between 0% and -0.60%. Evidently, the higher the lower bound is set, the more negative does the 

shadow rate get in response to unconventional monetary policies in times when the lower bound is 

binding. That is, the higher the lower bound, the more probability is attributed cet. par. to an outcome 

below the lower bound, which increases the value of the cash option. Equivalently, a higher lower 

bound assigns more weight to movements at the long end of the term structure, as a larger portion of 

implied forward rates at the short end (i.e. below the specified lower bound) is ignored in the 

estimation process.18 This means at the same time that a high lower bound might ignore monetary 

policy induced movements at the short end of the yield curve. The evident question is thus whether 

there is an optimal choice for the lower bound parameter. 

The answer to this question depends to a large extent on which interpretation we want to give the 

lower bound and thus our understanding of the shadow rate. In its original economic interpretation, we 

assume that the lower bound represents the level of interest rates at which investors switch to holding 

cash (i.e. exercising the cash option). This is then also consistent with the shadow rate being 

interpreted as the rate that would materialise in the absence of cash. The 'extreme' choice of a lower 

bound of -0.60% as shown in Graph 12, which as explained above shows little reaction to 

unconventional monetary policies but stays at more economically reasonable levels, can be justified 

                                                            
17 For instance, Krippner uses zero coupon government rates spliced with OIS rates once they are available, while Wu and 

Xia are calibrating their model to forward rates. Furthermore, Krippner uses for his estimations daily yield curve data and also 

includes the 30 year maturity (as opposed to the maximum 10 year maturity used by Wu/Xia and ourselves).  
18 That is, the measurement equation errors at the short end of the yield curve (where the lower bound applies) are not taken 

into account. The estimation then maximises the model-fit to the remaining longer maturities. 
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economically: it represents the minimum of the observed and expected (i.e. based on forward rates) 

OIS spot rates as derived from OIS curves. While Eonia has stayed at above -0.40% throughout the 

sample horizon, the inverted OIS swap curve up to the 3 year maturity in July 2016 implies expected 

spot rates that were considerably below. The argument then can be made that markets' expectation of a 

lower OIS rate in the future also implies their willingness to participate in the market at such rates, 

which means they don't exercise the cash option that constitutes the lower bound at this rate. Thus, the 

effective lower bound of interest rates must be at or below that minimum point. In that sense, the 

chosen lower bound represents an upper limit to the 'true' lower bound, which might be even more 

negative. As mentioned above, while this lower bound calibration yields shadow rate estimates whose 

levels seem more reasonable from a historical perspective, they show little correlation with the ECB's 

unconventional monetary policies, as illustrated in Graph 12. Consequently, the estimated shadow rate 

with a lower bound at -0.60% by definition hardly deviates from EONIA, as a very low cumulated 

probability is assigned to OIS rates falling below the lower bound such that the cash option value is 

diminished considerably.   

Alternatively, and more prominently in the literature, one can understand the lower bound rather as an 

econometric parameter choice to provide the desired features of the model. For example, if the goal is 

to map unconventional monetary policies that affect the long end of the yield curve, a higher lower 

bound than what can be justified under a purely economic interpretation might be desireable. As Graph 

6 illustrates, setting the lower bound to -0.20% or even at 0%  – both materially above realised OIS 

spot rates over the sample horizon – produces shadow rate estimates that correlate highly with the 

ECB's unconventional monetary policy measures. Furthermore, standardisation of those estimates can 

still provide a useful measure for a monetary policy variable in time series models.19 However, at the 

same time, those shadow rates are also more prone to pick up other movements in long-term rates that 

are not directly related to the monetary policy stance. For instance, lower long-term growth- and 

inflation expectations should lead to a flattening of the yield curve and thus to a decrease in the 

shadow rate, signaling a further easing of the monetary policy stance when measured by the shadow 

rate. While the decrease at the long end of the term structure also reflects expectations of ensuing 

lower future policy rates, in our opinion it can hardly be interpreted as part of the monetary policy 

stance in the sense of an active steering of interest rate expectations. The uptick of the shadow rate in 

the second quarter of 2015, just after the start of the public sector asset purchase programme (PSPP), 

for instance seems to be driven by increasing long-term inflation expectations on the back of 

increasing oil prices with realised inflation also picking up. Similarly, the increasing shadow rates post 

September 2016 may reflect to a large exent a higher growth and inflation outlook. Macroeconomic 

developments thus introduce some noise in the time series that does not necessarily reflect the ECB's 

monetary policy measures.  

                                                            
19 As the two-factor shadow rate estimates show material variations in magnitude but are similar with respect to their profiles 

and dynamics, they could be scaled, e.g. to match the Taylor rule during the unconventional monetary policy period, in order 

to obtain an estimate that could be used as a policy rate analogue in unconventional monetary policy periods. 
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Finally, an elegant way to ensure that the shadow rates capture unconventional monetary policies 

while avoiding overly unrealistic lower bound specifications from an economic perspective is to 

introduce a time-varying lower bound, e.g. by setting it to zero up to July 2012 and to the level of the 

deposit facility rate thereafter.20 This way, the lower bound stays close to realised rates even when they 

are not in deeply negative territory, thereby ensuring that the cash option value is non-zero, while 

avoiding that realised spot rates fall below the lower bound at any time. However, the idea of a time-

varying lower bound is rather econometrically than theoretically motivated, as it is not clear why 

economic agents' lower bound should change with changes in monetary policy.   

All in all, there is a trade-off in the calibration of shadow rate models between an economically 

reasonable interpretation and the usefulness of the shadow rate estimates as a stance indicator. While 

shadow rates can thus be a useful indicator of the monetary policy stance, it should not be confused for 

a proxy for the policy rate. In light of the model-sensitivity to the parameter choices, other outputs 

from shadow rate models have been proposed as stance indicators, such as the Effective Monetary 

Stimulus (EMS) measure, which sets the expected path of short term rates embedded in the yield curve 

in relation to an estimated long-term neutral rate, or lift-off measures, which measure the expected 

time until the policy rate crosses the lower bound.21 While more abstract than the shadow short rate, 

both measures have the advantage that they are more robust to different model specifications as 

shadow yield curves tend to be more similar across model specifications (Bauer and Rudebusch, 

2013).    

 

 

 

                                                            
20 For example, Kortela (2016) and Lemke and Vladu (2016) use time-varying lower bounds. 
21 See for example Halberstadt and Krippner (2016). However, the lift-off measure is only defined for an unconventional 

monetary policy framework, i.e. it does not exist when the lower bound is not binding. It can thus not provide a continuous 

measure of the monetary policy stance over time.  
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6. CONCLUSION 

The convergence of monetary policy rates towards a lower bound and the introduction of 

unconventional monetary policy measures targeting the long end of the yield curve have impaired the 

function of policy rates as a summary indicator for a central bank's policy stance. In this context, 

shadow short rates derived from term structure models have been proposed as a stance measure that 

captures movements along the yield curve and boils it down into a single indicator. One such shadow 

rate model that has received much attention in the literature is the two factor shadow rate model by 

Krippner, which we draw on in this paper.  

In this paper, we test an alternative method to calibrate shadow rate models to market data. More 

specifically, we use hybrid-genetic algorithms to calibrate Krippner’s two factor shadow rate model to 

the euro area OIS swap curve, showing that overall the results obtained corroborate those of Krippner 

(with even slightly improved calibration results as compared to those obtained when using Krippner’s 

already optimised starting values for the parameters). We also confirm Krippner’s finding that the 

IEKF outperforms the EKF by providing much more reliable and accurate parameter estimations from 

different starting points, which compensates for the fact that the Nelder-Mead optimisation routine is 

known to often result in a “local” optimum. But as our tests have also shown, this compensation is not 

perfect and in the case where the starting values of the parameters are set arbitrarily, the calibration 

quality obtained using hybrid-genetic algorithms was  higher than the one obtained using the Nelder-

Mead algorithm for those same arbitrary starting values. Thus, one noticeable advantage of using this 

hybrid-genetic algorithm approach is that it may prove itself to be very useful in cases where one 

needs to calibrate the shadow rate model to new datasets (new regions, other countries or yield curves 

etc …) when the starting point assumptions are unknown or in the presence of substantial market 

events and movements. 

While employing genetic algorithms can thus improve the overall calibration quality, it does not 

eradicate the general caveats associated with the shadow rate concept such as its overall high 

uncertainty arising from its sensitivity to the chosen model specification. Estimation results vary 

considerably, in particular depending on the number of factors included in the model and the assumed 

or endogenously estimated lower bound. While the case can be made for choosing two factors over 

three in order to better reflect unconventional monetary policy measures, it is not obvious which level 

of the lower bound should be chosen, as there is a trade-off between an economically reasonable 

interpretation of the shadow rate and its usefulness as a stance indicator at the lower bound. While 

shadow rates can thus be a useful indicator of the monetary policy stance, the uncertainy regarding 

their overall level and the multitude of measures they comprise warrant a careful interpretation of the 

estimation results.    

7. TECHNICAL ANNEX 

7.1 A TERM STRUCTURE-BASED SHADOW RATE 

Krippner uses a popular subclass of GATSMs (Gaussian affine term structure) models called arbitrage-free 

Nelson and Siegel (1987) models (ANSMs) to represent the shadow term structure. An affine term structure 

model is a financial model that relates zero-coupon bond prices (i.e. the discount curve) to a model for short rate. 

It is particularly useful for deriving the zero-coupon yield curve from quoted bond prices. Thus the starting point 

for the development of the affine class is the postulation of a stochastic process for the short rate and the related 

state variables, or factors, which drive the dynamics of the term structure. These factors are the underlying 

source of uncertainty in the model of the term structure.Under a GATSM, the short rate r(t) at time t is a linear 

function of the state variables x(t) at time t: 

r(t) = a0 + b0
′ xn(t) 
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where r(t) is a scalar, a0 is a constant scalar, b0 is a constant Nx1 vector containing the weights for the N state 

variables xn(t). Under the risk-neutral ℚ-measure, x(t) evolves as a correlated vector Ornstein-Uhlenbeck process22: 

dx(t) = k̃[θ̃ − x(t)]dt + σdW̃(t) 

where θ̃ is a constant Nx1 vector representing the long-run level of x(t), k̃ is a constant NxN matrix that governs 

the deterministic mean reversion of x(t) to θ̃, σ is a constant NxN matrix representing the correlated variance of 

innovations to x(t), and dW̃(t) is an Nx1 vector with independent risk-neutral Wiener components. The main 

advantages working with continuous-time specifications are that they are more amenable to mathematical 

manipulation, and they lead to closed-form analytic solutions for all representations of the term structure. 

The dynamics for the state variables vector x (t) are given by the solution to the above stochastic differential 

equation [for a more complete discussion see Krippner 2015, “Zero Lower Bound Term Structure Modeling”, 

p48]. The resulting closed-form expressions for short rate and the zero-coupon interest rates in the particular case 

of the two-factor arbitrage-free Nelson Siegel model, ANSM (2), are presented below: 

𝑟(𝑡) = 𝑥1(𝑡) + 𝑥2(𝑡) 

𝑅(𝑡, 𝜏) = 𝑎(𝜏) + [𝑏(𝜏)]′ [
𝑥1(𝑡)

𝑥2(𝑡)
] 

where 𝑟(𝑡) is the short rate and 𝑅(𝑡, 𝜏) is the zero-coupon interest rate for time to maturity 𝜏. 

The expressions 𝑎(𝜏) and 𝑏(𝜏) are themselves functions of 𝜏 and of the parameters k,̃ θ̃, σ which define the 

stochastic process for the short rate [see Krippner 2015, “Zero Lower Bound Term Structure Modeling”, p65]: 

𝑎(𝜏) = −𝜎1
2 ∙
1

6
𝜏2 − 𝜎2

2 ∙
1

2𝜙2
[1 −

1

𝜏
𝐺(𝜙, 𝜏) −

1

2𝜏
𝜙[𝐺(𝜙, 𝜏)]2] − 𝜌𝜎1𝜎2

∙
1

𝜙2
[1 −

1

𝜏
𝐺(𝜙, 𝜏) +

1

2
𝜙𝜏 − 𝜙𝐺(𝜙, 𝜏)] 

[𝑏(𝜏)]′ = [1,
1

𝜏
𝐺(𝜙, 𝜏)] 

where 𝐺(𝜙, 𝜏) =
1

𝜙
[1 − 𝑒𝑥𝑝(−𝜙𝜏)]. A key aspect is that the interest rate factor loadings are defined by [𝑏(𝜏)]′  

and this particular loading structure implies that the first factor is responsible for parallel yield curve shifts, since 

the effect of this factor is identical for all maturities; the second factor represents slope parameter of the yield 

curve slope. The key step to go from a yield curve model to the shadow rate model is to derive the closed-form 

analytic expression for the forward rate option effect z(t, τ ). 

Because the shadow rate framework uses a GATSM specification for shadow short rates, the dynamics of 

r(t + τ), the short rate in τ years from now, in terms of the state variables x(t), also define the dynamics for the 

option component max{rL − r(t + τ), 0}. In fact, the ZLB forward rate f(t, τ) is obtained by calculating the 

expectation of ZLB short rates  r(t + τ) under the t + τ forward ℚ-measure: 

f(t, τ) =  Ε̃t+τ[ r(t + τ) x(t) ] 

= Ε̃t+τ[ r(t + τ) x(t) ] + Ε̃t+τ[max{rL − r(t + τ), 0} x(t)] 

                                                            
22 In mathematics, the Ornstein–Uhlenbeck process is a stochastic process that can be considered to be a 

modification of the random walk in continuous time in which the properties of the process have been changed so 

that there is a tendency of the walk to drift towards its long-term mean, with a greater mean-reversion when the 

process has drifted further away from it’s long-term mean. 
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= f(t, τ) + z(t, τ) 

where f(t, τ) is the shadow forward rate and z(t, τ) is the forward option effect. The forward option effect is 

derived by evaluating directly the expectation Ε̃t+τ[max{rL − r(t + τ), 0} x(t)] which results in the following 

analytical expression for the forward option effect [see Krippner 2015, “Zero Lower Bound Term Structure 

Modeling”, p111]: 

z(t, τ) = [rL − f(t, τ)] ∙  1 − Φ [
f(t, τ) − rL
ω(τ)

] + ω(t) ∙ ∅ [
f(t, τ) − rL
ω(τ)

] 

where Φ(∙) is the cumulative unit normal density function, ∅(∙) is the unit normal probability density function, and 

ω(τ) is the shadow short rate standard deviation. Substituting the result for z(t, τ) above into the expression f(t, τ) =

f(t, τ) + z(t, τ) yields the ZLB forward rate expressed in terms of the shadow forward rate and the option effect: 

 f(t, τ) = f(t, τ) +  z(t, τ) 

= rL + [f(t, τ) − rL] ∙ Φ [
f(t, τ) − rL
ω(τ)

] + ω(τ) ∙ ∅ [
f(t, τ) − rL
ω(τ)

] 

In the particular case of the two-factor shadow rate model, K-ANSM (2), the ZLB forward rate as derived from 

the above theoretical foundations has the following closed-form analytic form [see Krippner 2015, “Zero Lower 

Bound Term Structure Modeling”, p129]: 

 f(t, τ) = rL + [f(t, τ) − rL] ∙ Φ [
f(t,τ)−rL

ω(τ)
] 

+ω(τ) ∙
1

√2𝜋
∙ exp  −

1

2
[
f(t, τ) − rL

ω(τ)
]

2

  

Furthermore, in the particular case of the two-factor model, the shadow short rate volatility function is derived to be: 

ω(τ) = √𝜎1
2 ∙ τ + 𝜎2

2 ∙ G(2𝜙, τ) + 2𝜌12𝜎1𝜎2 ∙ G(𝜙, τ) 

where G(𝜙, τ) =
1

𝜙
[1 − 𝑒𝑥𝑝(−𝜙τ)]. 

In a final step, ZLB zero-coupon interest rates are derived from forward rates using the usual term structure 

relationship: 

R(t, τ) =
1

τ
∫  f(t, u)𝑑u

τ

0

 

where 𝑅(𝑡, 𝜏) is the ZLB zero-coupon interest rate for time to maturity 𝜏. 

The integral does not have a closed-form analytic solution, because f(t, u) contains the cumulative Gaussian 

distribution, but univariate numerical integration of f(t, u) over time to maturity τ may be used to calculate the 

integral to arbitrary precision. Now that the theoretical foundations for the shadow rate model have been 

established, the next section will discuss how to calibrate the shadow rate to market data. 

7.2 CALIBRATING SHADOW RATE MODELS 

The two-factor shadow rate model, K-ANSM (2), has the following 11parameters to estimate, of which the first 

10 originate from the definition of the stochastic process for the short rate, that is 
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Parameter set Β = {𝜙, 𝑘11, 𝑘12, 𝑘21, 𝑘22, 𝜃1, 𝜃2, 𝜎1, 𝜎2, 𝜌12 , 𝜎𝜂} 

 

plus the variable 𝜎𝜂 which represents the measurement equation (Kalman filter) standard deviation. 

 

The state variables and the parameters when expressed in matrix form can be linked directly to the expression 

defining the stochastic process for the short rate (a correlated vector Ornstein-Uhlenbeck process): 

 

𝑥(𝑡) = [
𝑥1(𝑡)

𝑥2(𝑡)
] ;  𝑎0 = 0; 𝑏0 = [

1

1
] ; 𝑘 = [

𝑘11 𝑘12
𝑘21 𝑘22

] ;  𝜃 = [
𝜃1
𝜃2
] 

 

𝜎 = [
𝜎1 0

𝜌12𝜎2 𝜎2√1 − 𝜌12
2
] ;  𝑘̃ = [

0 0
0 𝜙

] ;  𝜃̃ = [
0

0
]  

 

Calibrating the K-ANSM (2) involves embedding the Kalman filter into an optimisation algorithmso as to 

estimate the parameters for the specified model, and the state variables associated with those parameters and 

calculated by the Kalman filter are also an output of the optimisation. The Kalman filter is based on a state 

equation, which specifies how the state variables evolve over time, and a measurement equation, which specifies 

how the state variables explain the observed data at each point in time. In our particular case, the state variables 

are in the vector x (t), the measurement equation is the GATSM yield curve expression as a function of x (t), and 

the data is the observed yield curve data at each point in time. The objective function of the optimisation 

algorithm is to maximise the log-likelihood function given by the expression  

𝐿𝑜𝑔_𝐿𝐾𝐿(𝐵, 𝜎𝜂 , {𝑍𝐶1, … , 𝑍𝐶𝑇}) = −
1

2
∑[𝐾 ∙ 𝑙𝑜𝑔(2𝜋) + 𝑙𝑜𝑔( ℳ𝑡 ) + 𝜂𝑡

′ℳ𝑡
−1𝜂𝑡]

𝑇

𝑡=1

 

where {𝜂1…𝜂𝑇} is the time series of Kx1 vectors containing the unexplained component of the yield curve data 

at time 𝑡 relative to the K-ANSM (2) model (obtained using the measurement equation) and {ℳ1…ℳ𝑇} is the 

time series of KxK matrices obtained at each time step of the Kalman filter algorithm. The constant K refers to 

the number of yield curve tenors used in the calibration sample, which in our case refers to the following yield 

curve 9 tenors: 1M, 3M, 6M, 1Y, 2Y, 3Y, 5Y, 7Y, and 10Y. 

The addition of the "option" component introduces non-linearity in the Kalman filter's measurement equations, 

and hence the calibration of the K-ANSM (2) model requires a nonlinear Kalman filter: Krippner opted for the 

iterated extended Kalman filter (IEKF). The IEKF effectively calculates a first-order Taylor approximation23 of 

the non-linear interest rate function around the best available estimate of the state variable vector. The use of the 

IEKF allows for the non-linearity of R(t, τ) with respect to the state variables. The state equation for the K-

ANSM (2) is a first-order vector autoregression of the following form: 

𝑥𝑡 = 𝜃 + 𝑒𝑥𝑝(−𝑘Δ𝑡)(𝑥𝑡−1 − 𝜃) + 𝜀𝑡 

where the subscripts 𝑡 are an integer index to represent the progression of time in steps of Δ𝑡 between 

observations (in the case of monthly data Δ𝑡 = 1/12), 𝑒𝑥𝑝(−𝑘Δ𝑡) is the matrix exponential of −𝑘Δ𝑡, and 𝜀𝑡 is the 

vector of innovations to the state variables. The variance of 𝜀𝑡 is: 

𝑣𝑎𝑟(𝜀𝑡) = ∫ 𝑒𝑥𝑝(−𝑘𝑢)𝜎𝜎′exp (−𝑘′𝑢)
Δ𝑡

0

𝑑𝑢 

which is a 2x2 matrix. The measurement equation for the K-ANSM (2) is given by: 

[
𝑅𝑡(𝜏1)

⋮
𝑅𝑡(𝜏𝐾)

] = [

𝑅(𝑥𝑡 , 𝜏1, Β)

⋮
𝑅(𝑥𝑡 , 𝜏𝐾 , Β)

] + [
𝜂𝑡(𝜏1)
⋮

𝜂𝑡(𝜏𝐾)
] 

                                                            
23 In mathematics, a Taylor series is a representation of a function as an infinite sum of terms that are calculated 

from the values of the function's derivatives at a single point. 
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where K is the index for the yield curve tenor 𝜏𝐾 , 𝑅𝑡(𝜏𝐾) is the observed interest rate at time 𝑡 for time to 

maturity 𝜏𝐾, 𝑅(𝑥𝑡 , 𝜏𝐾 , Β) are the the zero-coupon model-based interest rate functions evaluated at 𝜏𝐾, and 𝜂𝑡(𝜏𝐾) 

is the component of 𝑅𝑡(𝜏𝐾) that is unexplained by the K-ANSM(2) model. The variance of 𝜂𝑡 is specified to be 

homoskedastic and diagonal: 

Ω𝜂 = 𝑑𝑖𝑎𝑔[{𝜎𝜂
2, … , 𝜎𝜂

2}] 

where Ω𝜂 is a KxK matrix with entries 𝜎𝜂
2. Furthermore, reflecting standard practice, the vectors 𝜂𝑡 and 𝜀𝑡 are 

assumed to be uncorrelated over time. 

In a previous version of Krippner’s K-ANSM (2) model (prior to July-2016), the variance of 𝜂𝑡 was specified as 

heteroskedastic and diagonal which translates to: 

Ω𝜂 = 𝑑𝑖𝑎𝑔[{𝜎𝜂
2(𝜏1), … , 𝜎𝜂

2(𝜏𝐾)}] 

That specification led to larger variances in the residuals for the short and long-maturity data, which had the 

practical effect of a less close fit to the short-maturity data and more volatile shadow rate estimates in both the 

non ZLB and ZLB periods. The homoskedastic specification enforces similar sized residuals across the yield 

curve data, which results in less volatile shadow rate estimates. 

7.3 THE OPTIMISATION ALGORITHM 

A very commonly used derivative-free algorithm to maximise the log-likelihood function is the Nelder-Mead 

simplex search method of Lagarias et al. This is a direct search method that does not use numerical or analytic 

gradients (FMINSEARCH function in MATLAB). It is also the method employed by Krippner to calibrate the 

shadow rate model (minimising the negative of the log-likelihood function). In a nutshell, it works as follows: 

consider the function 𝑓(𝑥) to be minimised where 𝑓:ℝ𝑛 → ℝ is called the objective function and 𝑛 the 

dimention. A simplex is a geometric figure in 𝑛 dimensions which is the convex hull of 𝑛 + 1 vertices (denote 

the simplex with vertices 𝑥1, … , 𝑥𝑛+1 by ∆). The method iteratively generates a sequence of simplices to seek 

the minimum point and at each iteration the vertices are ordered according to the objective function values 

𝑓(𝑥1) ≤ 𝑓(𝑥2) ≤ ⋯ ≤ 𝑓(𝑥𝑛+1). We refer to 𝑥1as the best vertex and to 𝑥𝑛+1 as the worst vertex. The algorithm 

uses four possible operations: reflection 𝛼, expansion 𝛽 , contraction 𝛾 and shrink 𝛿, each being associated with 

a scalar parameter. Let 𝑥̅ be the centroid of the 𝑛 best vertices, which implies that 𝑥̅ =
1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1 . Any one given 

iteration of the Nelder-Mead algorithm follows the following scheme: 

1. Sort: evaluate 𝑓 at the 𝑛 + 1 vertices of ∆ and sort the vertices (as described above). 

 

2. Reflection: compute the reflection point 𝑥𝑟 from 𝑥𝑟 = 𝑥̅ + 𝛼(𝑥̅ − 𝑥𝑛+1). Then evaluate 𝑓𝑟 = 𝑓(𝑥𝑟). If 
𝑓1 ≤ 𝑓𝑟 < 𝑓𝑛 then replace 𝑥𝑛+1 with 𝑥𝑟. 

 

3. Expansion: if 𝑓𝑟 < 𝑓1 then compute the expansion point 𝑥𝑒 from 𝑥𝑒 = 𝑥̅ + 𝛽(𝑥𝑟 − 𝑥̅) and evaluate 

𝑓𝑒 = 𝑓(𝑥𝑒). If 𝑓𝑒 < 𝑓𝑟 then replace 𝑥𝑛+1 with 𝑥𝑒, otherwise replace 𝑥𝑛+1 with 𝑥𝑟. 

 

4. Outside contraction: if 𝑓𝑛 ≤ 𝑓𝑟 < 𝑓𝑛+1 then compute the outside contraction point 𝑥𝑜𝑐 = 𝑥̅ + 𝛾(𝑥𝑟 − 𝑥̅) 
and evaluate 𝑓𝑜𝑐 = 𝑓(𝑥𝑜𝑐). If 𝑓𝑜𝑐 ≤ 𝑓𝑟 then replace 𝑥𝑛+1 with 𝑥𝑜𝑐, otherwise go to step 6. 

 

5. Inside contraction: if 𝑓𝑟 ≥ 𝑓𝑛+1 then compute the inside contraction point 𝑥𝑖𝑐 = 𝑥̅ − 𝛾(𝑥𝑟 − 𝑥̅) and 

evaluate 𝑓𝑖𝑐 = 𝑓(𝑥𝑖𝑐). If 𝑓𝑖𝑐 < 𝑓𝑛+1 then replace 𝑥𝑛+1 with 𝑥𝑖𝑐, otherwise go to step 6. 

 

6. Shrink: for 2 ≤ 𝑖 ≤ 𝑛 + 1 then define 𝑥𝑖 = 𝑥1 + 𝛿(𝑥𝑖 − 𝑥1). Replace all points except the first/best 𝑥1 

and go to step 1. 

This scheme is repeated until the diameter of the simplex is less than the specified tolerance.  
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