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Motivation

Socio-economic development has a signi�cant impact on the natural
environment through the use of resources, generation of waste and
pollution.

Nature is increasingly seen as another form of capital (natural capital),
which is a source of bene�ts for present and future generations (ecosystem
services).

Therefore, it is important to question the dynamics of long-term economic
growth processes in the context of preserving natural capital and its
impact on social welfare.

The aim of the work is to supplement the neoclassical growth model with
a natural capital factor (N) and to analyze possible long-term equilibrium
states at positive values of N.



Literature background

Neoclassical economics vs. ecological economics

1 substitutability of production factors

2 Natural resources (market goods) and ecosystem services. Utility of
consumption and quality of life.

3 The direction of the evolution of the natural capital stock is the result of
several contradictory factors � the ability of natural capital to regenerate
and the pressure exerted by the production and consumption processes.

4 The problem of critical thresholds and exponential economic growth.



Literature background

Main results

Neoclassical growth with exhaustible resources: Dasgupta & Heal (1974),
Solow (1974), Stiglitz (1974) and Hartwick (1977) � model DHSS
(Benchekroun, Withagen, 2011).

Models aiming to explain the collapse of ancient societes: Brander &
Taylor (1998), Dalton & Coats (2000), D'Allesandro (2007), Roman,
Bullock & Brede (2017)

Two-sector economic model with complementary production factors
(Leontief function) and aggregate natural capital stock X of the form
Ẋ = g(X )−M, g(X ) = γX (1− X/S), γ > 0: Comolli (2006).

Combination of neoclassical growth theory with the concept of
dematerialisation of the economy. Material requirement as a measure of
natural capital consumption: Bringezu, Schutz and Moll (2003), Rodrigues
et al. (2005).



Neoclassical model with natural capital

The model

K � manufactured capital, N � natural capital, A � technology.
L = L0 is assumed to be constant, L0 = 1.

C-D production function: Y = KαA1−α, α ∈ (0, 1).

Division of product: Y = I + V + C

Dynamics of capitals:

K̇ = Y − C − V − δK

Ṅ = rN

(
N

CT
− 1

)(
1− N

CC

)
− P + V ω, ω ∈ (0, 1)

material requirement: P = γY = γ0A
−aY n

(∗) utility: U = U(C ,N) = lnC + ϕ lnN



Neoclassical model with natural capital

Steps of analysis

(I) model with constant technology � dynamics

(II) the role of technology � dynamics

(III) investment in natural capital � dynamics



Neoclassical model with natural capital

(I) Model with constant technology

(I) Dynamics of the system: case of A = 1, V = 0 (1)

Assumptions:

A = 1 � constant technology
s � saving rate, K̇ = sY − δK
P = γ0K

αn =⇒ Ṅ = rN
(

N
CT

− 1
) (

1− N
CC

)
− γ0K

αn

Stationary points are solutions of the system:{
K̇ = 0

Ṅ = 0
=⇒

{
sKα − δK = 0

rN
(

N
CT

− 1
) (

1− N
CC

)
− γ0K

αn = 0

It may have four, �ve or six stationary points, depending on the environmental
capacity, critical treshold and the rate r .



Neoclassical model with natural capital

(I) Model with constant technology

(I) Dynamics of the system: A = 1, V = 0: stationary points (2)

(a) ∆ > 0

Figure: Possible stationary points of the system
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(I) Dynamics of the system: A = 1, V = 0: stationary points (2)

(b) ∆ = 0

Figure: Possible stationary points of the system



Neoclassical model with natural capital

(I) Model with constant technology

(I) Dynamics of the system: A = 1, V = 0: stationary points (2)

(c) ∆ < 0

Figure: Possible stationary points of the system



Neoclassical model with natural capital

(I) Model with constant technology

(I) Dynamics of the system: A = 1, V = 0: solvability (3)

Isoclines: {
K =

(
s
δ

) 1
1−α

γ0
r
Kαn = − 1

CT ·CC N
3 + CC+CT

CT ·CC N2 − N

− 1

CT · CC N3 +
CC + CT

CT · CC N2 − N − γ0
r

( s

δ

) αn
1−α

= 0

Decisive quantites:
1

r
· γ0

( s

δ

) αn
1−α ≡ E

r

∆ :=
[
− 2

27
(CT + CC)3 + E

r
CT · CC + 1

3
(CT + CC) · CT · CC

]2
+ 4

27

[
CT · CC − 1

3
(CT + CC)2

]3
Cardano formulas imply:

no internal (positive) solution i� ∆ > 0
one internal (positive) solution i� ∆ = 0
two internal (positive) solutions i� ∆ < 0



Neoclassical model with natural capital

(I) Model with constant technology

(I) Dynamics of the system: A = 1, V = 0: solvability (4)

(a) E >> r (b) E = r (c) E << r

Figure: Combination of (CT ,CC) allowing (at �xed rate r) existence of positive
internal solutions.



Neoclassical model with natural capital

(I) Model with constant technology

(I) Dynamics of the system: A = 1, V = 0 (5)

(a) ∆ > 0 (b) ∆ = 0 (c) ∆ < 0

Figure: Dynamics of the system (exemplary values of parameters: α = 0.3, s = 0.1,
n = 0.2, δ = 0.05, g0 = 0.2; for the case (a): r = 0.15, CT = 6, CC = 8; for the case
(b): r = 0.15, CT ≈ 5, CC ≈ 7.23; for the case (c): r = 0.25, CT = 4, CC = 9).
Isoclines in blue.



Neoclassical model with natural capital

(I) Model with constant technology

(I) Dynamics of the system: A = 1, V = 0: bassin of attraction (6)

Figure: Bassin of attraction of the point (K∗
6 ,N

∗
6 ) (yellow)



Neoclassical model with natural capital

(I) Model with constant technology

(I) Analysis of quantity ∆

limit interpretation

lim
CC→0+

∆(CC ,CT , r) = 0 when natural capital disapears (CC = 0), then the model
reduces to the standard Solow model with one stationary
point and typical dynamics.

lim
CC→+∞

∆(CC ,CT , r) = −∞ if the carrying capacity increases, there are two positive
stationary points (man-made capital, catural capital)

lim
CT→0+

∆(CC ,CT , r) = 0 if there is no critical treshold for natural capital, the
model boils down to the one presented in [Rodrigues et
al., 2005].

lim
CT→CC−

∆(CC ,CT , r) =

E

r

(
4

27
CC +

E

r

)
CC4 > 0

if the level of the critical treshold is close to the carrying
capacity, there is no positive stationary points (natural
capital is exploited)

lim
r→+∞

∆(CC ,CT , r) =

−
1

27
CC2CT 2(CC−CT )2 < 0

the increasing regeneration rate leads to two positive sta-
tionary points

lim
r→0+

∆(CC ,CT , r) = +∞ the decreasing regeneration rate leads to exploitation of
natural capital



Neoclassical model with natural capital

(II) Model with technological progress

(II) Dynamics of the system: in�uence of technology, V = 0 (1)

Quantities explicitly dependent on A

Ȧ

A
= gA

Y = KαA1−α

P = γ0A
−aY n

Introducing:

k =
K

A
, y =

Y

A
,

the model in those new terms is described by equations:

y = kα

k̇ = skα − (δ + gA)k

Ṅ = rN
(

N
CT

− 1
) (

1− N
CC

)
− γ0A

n−akαn

The positive capital solution obviously is:

k∗ =

(
s

δ + gA

) 1
1−α

<
( s

δ

) 1
1−α

.



Neoclassical model with natural capital
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K
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Y

A
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(

N
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δ
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Neoclassical model with natural capital

(II) Model with technological progress

(II) Dynamics of the system: in�uence of technology, V = 0 (2)

{
k = k∗

γ0A
n−a(k∗)αn = rN

(
N
CT

− 1
) (

1− N
CC

)

(a) n < a (b) n = a (c) n > a

Figure: Possibility of internal solutions in the model with technology.

(∗) For (b): E = γ0

(
s

δ + gA

) αn
1−α

, ∆ < 0.

(∗) empirical studies: n > a, hence k∗ ↘ 0 (for gA = const)



Neoclassical model with natural capital

(II) Model with technological progress

(II) Dynamics of the system: in�uence of technology, V = 0,
gA = g(gK ) (3)

after Rodriguezs et al (2005):

gA =
Ȧ

A
= g

(
K̇

K

)
, g(·) = 0 for

K̇

K
≤ 0,

where g is a concave and continuous function for gK = K̇
K
> 0, g ′(0) > 1 and

bounded from above.

If natural capital N∗ is to be kept constant, i.e. Ṅ∗ = 0, we should require
P = γ0A

−aY n to be constant as well. Therefore:

−agA + ngY = 0

and in conclusion:

gK =
1

α

( a

n
− 1+ α

)
g(gK ).



Neoclassical model with natural capital

(II) Model with technological progress

(II) Dynamics of the system: in�uence of technology, V = 0,
gA = g(gK ) (4)

Figure: The �xed point of function g .



Neoclassical model with natural capital

(III) Investment in natural capital

(III) Dynamics of the system: investment in natural capital (1)

Division of production

Y = I + V + C

I = sY , V = νY

Dynamics:
K̇ = Y − C − V − δK ,

Ṅ = rN
(

N
CT

− 1
) (

1− N
CC

)
− P + V .

Stationary points (under assumption of constant rates of savings)

K̇ = sKα − δK ,

Ṅ = rN
(

N
CT

− 1
) (

1− N
CC

)
− γ0K

αn + νKα.



Neoclassical model with natural capital

(III) Investment in natural capital

(III) Dynamics of the system: investment in natural capital (2)

Figure: The e�ect of investment in natural capital.

Internal positive capital:

K∗ =
( s

δ

) 1
1−α

; choice of

ν ∈ (0, 1− s)

γ0 ·
( s
δ

)α(n−1)
1−α − rÑ

(
Ñ

CT
− 1

)(
1−

Ñ

CC

)
·
( s
δ

)− α
1−α ≤ ν ≤ 1− s.



Conslusions

Main conclusions

1 Extension of the standard neoclassical model of economic growth by the
requirement to preserve natural capital signi�cantly enriches the dynamic
behaviour of the economy.

2 In the model with a �xed rate of savings, we provide the condition for
existence of a stable equilibrium with a positive stock of natural capital.
Requirements:

∆ < 0 ⇐⇒
[
− 2

27
(CT + CC)3 + E

r
CT · CC + 1

3
(CT + CC) · CT · CC

]2
+ 4

27

[
CT · CC − 1

3
(CT + CC)2

]3
< 0

(nonempty set of (CT ,CC) when r and E are �xed)

(K0,N0) belongs to the bassin of attraction of the stationary point

3 Keeping the natural capital N on constant level requires capital
accumulation to slow down.

4 Investments in natural capital are an additional factor allowing to obtain
an internal stable equilibrium.
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