
EUROPEAN 
ECONOMY

Economic and 
Financial Affairs

ISSN 2443-8022 (online)

Jens Suedekum and Nicole Woessner

DISCUSSION PAPER 118 | OCTOBER 2019

Robots 
& the Rise 
of European 
Superstar Firms 

The Productivity Challenge:
Jobs & Incomes in the Dawning Era of Intelligence RobotsFELLOWSHIP INITIATIVE

EUROPEAN ECONOMY



2019 Fellowship Initiative Papers are written by external experts commissioned to write research 
papers, retaining complete academic independence, contributing to the discussion on economic policy and 
stimulating debate. 
 
The views expressed in this document are solely those of the author(s) and do not necessarily represent the 
official views of the European Commission. 
 
Authorised for publication by Mary Veronica Tovšak Pleterski, Director for Investment, Growth and Structural 
Reforms. 
 
 

 

DG ECFIN's Fellowship Initiative 2018-2019 “The Productivity Challenge: Jobs and Incomes in the 
Dawning Era of Intelligent Robots” has solicited contributions examining current and possible future 
productivity developments in Europe. In view of possible hysteresis effects after the crisis and in the 
general context of ageing populations and globalisation, the aim has been to re-examine the ongoing 
trends and drivers and to identify policies to tap fully the potential for inclusive productivity growth. 
The fellowships have been awarded to prominent scholars in the field to interact with staff in ECFIN 
and other Commission colleagues, and to prepare final reports on specific research questions within 
this general topic.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

LEGAL NOTICE 
 
Neither the European Commission nor any person acting on behalf of the European Commission is responsible 
for the use that might be made of the information contained in this publication. 
 
This paper exists in English only and can be downloaded from  
https://ec.europa.eu/info/publications/economic-and-financial-affairs-publications_en.   
 
 
 
Luxembourg: Publications Office of the European Union, 2019 
 
 
PDF       ISBN 978-92-76-11186-3       ISSN 2443-8022        doi:10.2765/579528        KC-BD-19-005-EN-N      

 
 
 
 
 

© European Union, 2019 
Non-commercial reproduction is authorised provided the source is acknowledged. For any use or reproduction 
of material that is not under the EU copyright, permission must be sought directly from the copyright holders. 

https://ec.europa.eu/info/publications/economic-and-financial-affairs-publications_en
http://data.europa.eu/doi/10.2765/xxxxx


European Commission 
Directorate-General for Economic and Financial Affairs 
 
 

 
Robots and the Rise of European Superstar Firms 
 
 
Jens Suedekum and Nicole Woessner 
 
 
Abstract 
 
We estimate the impact of a recent digital automation technology - industrial robotics - on the distribution 
of productivity and markups within industries. Our empirical analysis combines data on the industry-level 
stock of industrial robots with firms' balance sheet data for six European countries from 2004 to 2013. We 
find that robots dis-proportionally raise productivity in those firms that are already most productive to 
begin with. Those firms are able to increase their markups, while markups tend to decline for less profitable 
firms within the same industry, country and year. We also show that industrial robots contribute to the 
falling aggregate labour income share through a rising concentration of industry sales. In short, our paper 
suggests that robots boost the emergence of superstar firms within European manufacturing, and thereby 
shifts the functional income distribution away from wages and towards profits. 

 
 
JEL Classification: D4, L11, O33. 
 
Keywords: Automation, industrial robots, productivity, markups, labour share, superstar firms. 
 
 
Acknowledgements: We thank seminar participants in Brussels and Düsseldorf for helpful comments 
and suggestions. 
 
 
 
The closing date for this document was 28 May 2019. 
 
 
 
 
Contact: Jens Suedekum, Düsseldorf Institute for Competition Economics (DICE), Heinrich-Heine 
University Düusseldorf, suedekum@dice.uni-duesseldorf.de. Nicole Woessner, Düsseldorf Institute for 
Competition Economics (DICE), Heinrich-Heine University Düsseldorf, woessner@dice.uni-
duesseldorf.de. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

EUROPEAN ECONOMY                                                                                      Discussion Paper 118 

mailto:suedekum@dice.uni-duesseldorf.de
mailto:woessner@dice.uni-duesseldorf.de
mailto:woessner@dice.uni-duesseldorf.de


 



CONTENTS 

 

1. Introduction  ....................................................................................................................................................... 2 

 

2. Data   ........................................................................................................................................ 6 

2.1.  Robot data .................................................................................................................................................... 6 

2.2.  Firm-level data .............................................................................................................................................. 7 

2.3.  Other industry data ...................................................................................................................................... 9 

 

3. Economic strategy ........................................................................................................................................... 9 

3.1.  Estimating productivity and markups ..................................................................................................... 10 

3.2.  Evaluating the effects of robots ................................................................................................................ 7 

 

4. Empirical results ................................................................................................................................................ 14 

4.1.  Production function estimation ............................................................................................................... 14 

4.2.  Robots and the distribution of firm-level productivity and markups ................................................. 19 

4.3.  Robustness checks ..................................................................................................................................... 23 

 

5. Industry concentration and the labor share ................................................................................ 27 

6. Conclusion  ..................................................................................................................................................... 29 

 

 

APPENDIX 

A.1 Data appendix .................................................................................................................................................. 38 

A.2 Appendix tables ................................................................................................................................................ 39 

 

 

REFERENCES 

 

 



1 Introduction

“A small group of giant companies – some old, some new – are once again dominating the global

economy [...]” . This assessment by The Economist (2016) from its piece The rise of the superstars,

referred mostly to American internet giants such as Google or Apple. But also apart from those well

publicized cases, recent research suggests that the previous decades were more broadly characterized

by a reallocation of production and market shares towards highly productive and profitable firms –

with notable implications for competition, market power, and the income distribution.

In the United States (US), market concentration has increased in more than 75% of all industries

during the last 20 years according to Grullon et al. (forthcoming), while average markups have risen

mainly because highly profitable firms were able to grasp additional market shares (De Loecker

and Eeckhout, 2017, 2018). This elevated market power, in turn, has aggregate implications as it

seems to be tightly linked to the falling labor share of income (Autor et al., 2017a,b; Kehrig and

Vincent, 2018). Those trends are particularly strong in the US, but they have been uncovered,

though somewhat muted, also in other countries. Andrews et al. (2016) find that global frontier

firms – the top 5% most productive firms within an industry and year – have significantly gained

market share relative to laggards across all OECD members, and Calligaris et al. (2018) document

an average markup increase of 5% between 2001 and 2014 for firms in 26 countries worldwide.

An important and yet unresolved question is: what are the underlying drivers of this superstar

firm pattern? Explanations for the observed increase in productivity dispersion and the concentra-

tion of market power include limited antitrust enforcement and increasing regulation (e.g., Gutiérrez

and Philippon, 2017, 2018), as well as increased import competition as a result of globalization (e.g.,

Autor et al., 2017b). But one key explanation, emphasized by The Economist (2016) and many

others, seems to be the role of technology. If newly emerging technological possibilities accrue pri-

marily to (or were developed by) the most productive firms within an industry, they get even more

productive, gain larger market shares, and charge higher markups. Empirical evidence on the drivers

of this superstar phenomenon, in particular on the role of technology, is however limited.

In this paper, we examine the role of one particular new digital technology, industrial robots,

in shaping the distribution of firm-level productivity and markups within industries. At first we

document that the superior (productivity and markup) growth performance of already productive

and profitable firms is also a feature of some (though not all) European manufacturing branches.

We then investigate which industries tend to exhibit this pattern, and find that it is considerably

stronger in more robotized industries: Robots drive the emergence of superstar firms.

We exploit data for six European countries (France, Germany, Italy, Spain, Finland, and Swe-

den) from 2004 to 2013, and our results indicate that an increase in the stock of industrial robots
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dis-proportionally benefits the firms that already exhibited the highest levels of productivity and

markups to begin with. More specifically, we find a rise in TFP for the top 20% of firms with the

highest initial productivity, but an insignificant effect on the other firms in an industry. The im-

pact on markups also displays considerable heterogeneity: while robotization negatively affects the

markups of firms with initially low and medium markups, it allows the top 10% of firms to increase

their markups even further. In addition, we provide evidence that industrial robots contribute to

the falling labor share through an increased concentration of industry sales in low labor share firms.

Related literature. The rise of superstar firms and its economic impact has been analyzed by

Autor et al. (2017a,b) in the context of the falling labor income share observed in recent decades.

In their stylized model, superstar firms are highly productive firms, which are characterized by high

profits and a low share of labor in firm value-added and sales. If a change in environment (for instance

the introduction of a new technology) mostly benefits these firms, and if they subsequently gain a

greater market share, then the industry’s aggregate labor share decreases due to the reallocation

of output towards these low labor share firms.1 Apart from the falling labor income share, the

superstar firm hypothesis is related to further secular economic trends that have been observed

over the last decades. First, while global productivity growth is slowing down (e.g., Syverson,

2017), productivity is rising for a set of firms at the productivity frontier leading to productivity

divergence (e.g.: Andrews et al., 2016; Haldane, 2017). More specifically, defining frontier firms as

the top 5% most productive firms within an industry and year for 24 OECD countries, Andrews

et al. (2016) document an increasing productivity gap between frontier and laggard firms between

1997 and 2014, with annual growth rates of around 3% for the former and of around 0.5% for the

latter. This evidence is consistent with Bahar (2018) who estimates a U-shape relationship between

productivity growth and initial levels within country-industry cells.

Furthermore, markups are rising in various countries and industries, and the increase in average

markups is driven by firms at the top of the markup distribution. De Loecker and Eeckhout (2017)

document the divergence of markups using data on publicly traded firms in the US from 1980

onwards, and show that it mainly stems from a change in markups within rather than between

industries.2 For European countries, the divergence of markups is less pronounced. According to

Weche and Wambach (2018), also the median markup has increased in recent years, in contrast to the

US where the increase in average markups is entirely driven by high markup firms. Moreover, while

1Kehrig and Vincent (2018) propose a similar mechanism confirming the reallocation of production towards so-
called hyper-productive establishments in US industries. Gutiérrez and Philippon (2019), in contrast, show that
superstar firms in the United States have not become larger and their contribution to overall productivity growth
through reallocation has only increased modestly over the past 60 years.

2Hall (2018) also documents rising markups in the US economy by using data at the sectoral level, but the increase
in less pronounced than in the work of De Loecker and Eeckhout (2017).
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focusing on the development of markups during and after the 2008 financial crisis, the authors show

that average markups have dropped during the crisis and not fully recovered in several european

countries, whereas in the US average markups already exceeded pre-crisis levels in 2011.

So far, direct evidence on the drivers behind this emergence of superstar firms has been lim-

ited, especially when it comes to the impact of new technologies. Our paper goes a first step in

that direction. Thereby we extend a recently growing literature which analyzes the impact of new

technologies on various industry-level measures such as market concentration or average firm sizes.3

Yet, these studies mainly exploit data on general ICT or related technologies and largely focus on

industry-level outcome variables. A small number of papers have instead used micro-level data on

technology adoption, however, this evidence is either based on correlations (Dinlersoz and Wolf,

2018), or limited to a specific firm outcome like sales (Lashkari and Bauer, 2018).

Bessen (2017) finds that the use of proprietary information technology (IT) systems increases

industry concentration, measured by the shares of sales to the top firms. Moreover, the use of

such IT systems is associated with relatively higher labor productivity for the top four firms within

an industry. Autor et al. (2017b) explore two measures of technical change – patent-intensity and

TFP –, and identify a positive correlation with the growth in industry concentration. In addition,

pointing to a potential slowdown in technological diffusion, they show that industries with a drop

in the speed of patent citations experience a higher rise in concentration rates. In a recent study,

Dinlersoz and Wolf (2018) investigate the link between technology adoption, superstar firms, and the

labor share, by exploiting plant-level information on technology use and investment from the U.S.

Census Bureau’s 1991 Survey of Manufacturing Technology. The cross-sectional data shows that

more productive and larger plants tend to be more automated. In addition, more technologically

advanced plants have a lower production labor share and experience larger declines in that share

on a five-to-ten year horizon. While the micro data allows detailed insights into the type of firms

that adopt new technologies, the direction of effects remains unclear. In another study, Lashkari

and Bauer (2018) examine the relationship between firm size and IT intensity using micro data on

software and hardware investment in french firms. Consistent with a non-homothetic IT demand,

they estimate a positive and significant elasticity of IT intensity with respect to exogenous variations

in firm size. Hence, a fall in the price of IT dis-proportionally benefits large firms, which may in

turn explain the reallocation effect towards superstar firms.

The present work is more generally related to a large literature studying the determinants of

productivity dispersion within narrowly defined industries, as surveyed in Syverson (2011). Different

explanations have been proposed, both on the supply-side like innovation (e.g., Foster et al., 2018),

3See, for instance, Bessen (2017), Autor et al. (2017b), Dinlersoz and Wolf (2018), and Lashkari and Bauer (2018).
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management practices (e.g., Bloom and Van Reenen, 2010), or resource misallocation across firms

(e.g.: Hsieh and Klenow, 2009; Gopinath et al., 2017), as well as on the demand-side like product

substitutability (Syverson, 2004). Regarding the effect of technology and innovation on productivity,

an extensive literature focuses on ICT (e.g.: Oliner and Sichel, 2000; Jorgenson, 2001; Bartel et al.,

2007; Inklaar et al., 2008), identifying important contributions both in the short and in the long run

(Brynjolfsson and Hitt, 2003), which are mainly driven by IT-intensive sectors (Stiroh, 2002).4 A

newer wave of automation is investigated by Graetz and Michaels (2018), who draw on the industrial

robot data from the IFR, and find a positive impact on labor productivity and TFP. The same data

set has also been used by Acemoglu and Restrepo (2017) and Dauth et al. (2018) to examine the

labor market effects of robots in the US and Germany, respectively.

Our work also speaks to the literature on the determinants of the downward trend in the ag-

gregate labor share of income which can be observed in many countries over the last decades. The

proposed explanations include, among other things, the decline in the price of capital relative to

labor associated with technological advancement (e.g.: Karabarbounis and Neiman, 2014; Dao et al.,

2017; Autor and Salomons, 2018), trade and international outsourcing (e.g.: Elsby et al., 2013; Dao

et al., 2017; Guschanski and Onaran, 2017), and falling bargaining power of labor (e.g.: Bental and

Demougin, 2010; Guschanski and Onaran, 2017). Most of this literature relies on aggregate industry

information and therefore neglects heterogeneity between firms. One exception is Adrjan (2018)

who exploits data on UK firms and finds that those with a higher capital intensity allocate a smaller

share of their value added to workers, which is in line with a declining relative price of capital. In

addition, firms with greater market power (measured by the sales portion) display a lower labor

income share, consistent with the reallocation mechanism proposed in Autor et al. (2017a,b).

Moreover, recent works by Autor et al. (2017a,b) and Kehrig and Vincent (2018) suggest a new

explanation for the fall in the aggregate labor share observed in recent decades: the reallocation of

production towards highly productive firms with a low labor share. We contribute to this literature

by analyzing the impact of robotization on the aggregate labor share, calculated either based on

unweighted or on sales-weighted averages of firm-level labor costs over sales. Hence, we directly

investigate the role of industrial robots in reducing the aggregate labor share through two different

channels: a fall within firms, or a reallocation of sales between heterogeneous firms.

The rest of this paper is organized as follows. Section 2 introduces the data sources and Section

3 describes the empirical strategy. In Section 4, we present our main results for the impact of robots

on productivity and markup distributions including various robustness checks. Section 5 studies the

effects on industry concentration and the labor share. Section 6 concludes.

4Note that Acemoglu et al. (2014) find little evidence that productivity was growing faster in IT-intensive sectors
after the late 1990s using US manufacturing data.
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2 Data

2.1 Robot data

Our main data set consists of the stock of industrial robots by country, industry, and year, and is

released by the International Federation of Robotics (2016). 5 The global robot market is growing

strongly: in 2017, robot sales increased by 21% to a new peak at US$16 billion, not even taking

into account the cost of software, peripherals, and systems engineering (International Federation of

Robotics, 2018).

The IFR records the installations of industrial robots on the basis of yearly surveys of nearly

all industrial robot suppliers worldwide. A robot is defined as an “automatically controlled, repro-

grammable, multipurpose manipulator programmable in three or more axes, which can be either

fixed in place or mobile for use in industrial automation applications” (International Federation of

Robotics, 2016, p. 25), according to the definition of the International Organization for Standard-

ization (ISO 8373). Examples of industrial robot applications include welding, painting, palletizing,

packaging, and handling materials. As explained by the International Federation of Robotics (2016),

the definition excludes so-called dedicated robots (as opposed to multipurpose robots) which cannot

be adapted to a different application, such as automated storage and retrieval systems in warehouses.

We use annual data on the stock of industrial robots for six European countries, namely France,

Germany, Italy, Spain, Finland, and Sweden, for the period from 2004 to 2013.6 The national

information is broken down by industrial branches according to the International Standard Industrial

Classification of All Economic Activities (ISIC) Revision 4. We focus on the manufacturing sector,

and are able to differentiate 14 industries.7 Figure 1 depicts the change in the number of robots per

thousand workers between 2004 and 2013. While the robot density varies considerably by country

and industry, the strongest increase is generally observed in the manufacture of pharmaceuticals

and cosmetics, of rubber and plastic products, and of motor vehicles. In these industries, up to 40

additional robots per thousand workers were installed in the period from 2004 to 2013. Industries

with no change or even a decline in robot usage are for example textiles, other chemical products,

other non-metallic mineral products, and electronics.

5This data set has already been used by Graetz and Michaels (2018), Acemoglu and Restrepo (2017), and Dauth
et al. (2018), primarily to evaluate the labor market effects of robots.

6The choice of countries is driven by the availability of comprehensive firm-level balance sheet information from
the Amadeus database.

7We do not use the IFR industries all other manufacturing, all other non-manufacturing, unspecified, unspecified
metal, and unspecified chemical products, as these robot counts cannot be clearly assigned to one of the 14 industries.
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Figure 1: Industry-level distribution of robots.

Note. The figure displays the change in the number of robots per thousand workers by ISIC Rev. 4 industries between 2004
and 2013 in Germany, Spain, Finland, France, Italy, and Sweden. Employment is measured as the number of employees in
2004. Sources: IFR, OECD Stan, own calculations.

2.2 Firm-level data

The second major data source is the Amadeus database which contains standardized annual ac-

counts of public and private European firms.8 It is collected by Bureau van Dijk on the basis of

company filings and reports, and includes detailed information on firms’ balance sheet and profit

and loss accounts. The comparability of data across countries and the classification of firms into

2-digit NACE9 industries make the data well suited for cross-country, cross-industry analyses. One

limitation of the Amadeus database is the incomplete identification of entry and exit of firms. For

instance, when a firm enters the sample in a given year, it is not clear whether this is also the year

where the firm has entered the market. This is potentially problematic, because there are two chan-

nels how robots may affect the distribution of firm performance within industries: heterogeneous

8The Amadeus database has been used in many empirical studies in international economics as well as in the
productivity and industrial organization literature (see, e.g.: Helpman et al., 2004; Konings and Vandenbussche, 2005;
Stiebale, 2016; Gopinath et al., 2017).

9NACE describes the statistical classification of economic activites in the European Communities, derived from
the French title Nomenclature générale des Activités économiques dans les Communautés Européennes.
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responses of incumbent firms, or firms entering and/or exiting the market.10 Since the information

on entry and exit is not reliable, we focus on the first channel. In the empirical application, as will

be explained in more detail in Section 3.2, we use incumbent firms which are present both in the

first and in the last year of any five-year period between 2004 and 2013.

The Amadeus data set is primarily used for the production function estimation, with the aim of

estimating firm-level TFP and markups. In doing so, output is measured as sales, labor input as

the number of employees, material input as material costs, and the capital stock is approximated by

tangible fixed assets. In addition, information on labor costs and capital depreciation are exploited

to calculate average wages, the labor share, and capital investments.11 Furthermore, in order to

control for industry-level foreign direct investment (FDI) in the regression analysis, we compute the

market share of foreign-owned firms in each 2-digit industry.12

The financial variables are adjusted using industry-level deflators for production, gross fixed

capital formation, and intermediate inputs from the OECD STructural ANalysis (STAN) database.13

Moreover, we drop a small number of firms where only consolidated balance sheet information is

available, i.e., the combined financial statements of a parent company and all its subsidiaries. In

addition, to deal with extreme outliers, the lower and the upper 0.5% quantile of each variable is set

to missing. Summary statistics for the firm-level variables are reported in Table 1.

Table 1: Summary statistics of firm-level variables.

Variable Definition Mean Std. dev. Obs.

Sales Total operating revenues 12,983.56 38,942.83 1,034,632
Labor Total number of employees 53.70 118.12 914,900
Materials Material costs 7,456.90 23,286.33 851,258
Capital stock Tangible fixed assets 2,620.64 7,897.14 966,819
Average wages Costs of employees / Labor 37.19 14.12 783,600
Labor share Costs of employees / Sales 0.24 0.14 913,402
Capital investment Investment in tangible fixed assets 408.89 1,928.41 814,537

Note. The variables are measured annually. The financial variables are given in thousand euros. The data includes firms
in the manufacturing sector (NACE Rev. 2, 2-digit industry codes 10-30) in France, Germany, Italy, Spain, Finland, and
Sweden between 1997 and 2015. Sources: Amadeus, own calculations.

10See Bahar (2018) who also discusses these two channels in the context of a change in the within-industry pro-
ductivity dispersion between two periods.

11Capital investment is calculated by applying the perpetual inventory method as for example in Collard-Wexler
and De Loecker (2016), i.e., Iit = Kit+1 −Kit + δKit, with I describing the capital investment, K the capital stock,
and δ the depreciation factor, for firm i at time t.

12A firm is defined as foreign-owned if the stake controlled by foreign shareholders is greater than 50%. To calculate
their market share, firms are weighted by sales.

13For Spain, the industry deflators for production and intermediate inputs are unfortunately not available. In
this case, we use the industry-level total output price index from the Eurostat Structural Business Statistics (SBS)
database to deflate the relevant variables.
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2.3 Other industry data

To consider earlier waves of automation and other measures related to innovation and technology,

we use data from the EU KLEMS September 2017 release (Jäger, 2017). The database includes

information on gross fixed capital formation (i.e., investments) of computing and communications

equipment – also known as ICT –, of computer software and databases, and of research and de-

velopment (R&D) by industry and country.14 In order to make the variables comparable across

countries, we follow Graetz and Michaels (2018) and convert the nominal values to 2010 US$ by

using the annual nominal exchange rates from the Penn World Table, Version 8.0 (Feenstra et al.,

2015). We further exploit data on industry-level wages (labor compensation in 2010 US$ divided

by total hours worked by persons engaged), and on the capital-to-labor ratio (capital over labor

compensation).

To account for potential confounding effects of international trade in the regression analysis, we

construct imports and exports at the industry level using data from the United Nations Interna-

tional Trade Statistics Database (Comtrade). The trade data is provided according to the Standard

International Trade Classification (SITC) Revision 3, and is converted to ISIC Revision 4 industries

using official cross-walks by the World Bank and Eurostat.15 The variables are measured in 2010

US$ by deflating current US$ with the consumer price index of the World Bank.16 Finally, the robot

density – the number of robots per thousand workers – is calculated by relying on employment data

from the OECD STAN database.17

3 Econometric strategy

The empirical strategy of this paper consists of two steps. We start with the production function

estimation to measure firm productivity and markups. In the second step we then use those variables

to evaluate the effects of robots on (the distribution of) firm-level productivity and markups within

industries.

14As both the IFR and the EU KLEMS data are reported according to the ISIC Rev. 4 industry classification, no
industry mapping is necessary.

15The conversion of the SITC Rev. 3 to the ISIC Rev. 4 industry classification includes three cross-walks, namely
SITC Rev. 3 to NACE Rev. 1, NACE Rev. 1 to NACE Rev. 1.1, and NACE Rev. 1.1 to NACE Rev. 2. Note that
NACE Rev. 2 is the same as ISIC Rev. 4 for 2-digit industries which is sufficient for our purposes. See Appendix A.1
for more details.

16https://data.worldbank.org/indicator/FP.CPI.TOTL?locations=US
17For Sweden, the employment data is not available separately for the ISIC Rev. 4 industries 20 and 21. In this

case, employment data from Eurostat SBS is used to calculate the respective shares and to distribute the number of
employees accordingly.
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3.1 Estimating productivity and markups

Consider a production function for firm i at time t:

Qit = F (Kit, Lit,Mit)Ωit, (1)

where Qit denotes output, Kit denotes the capital stock, Lit and Mit are labor and material inputs

respectively, and Ωit denotes total factor productivity (TFP).

In the empirical literature, two widely used functional forms are the Cobb-Douglas and the

translog production functions. On the one hand, the Cobb-Douglas production function is conve-

nient because of the relatively few parameters to estimate and the straightforward interpretation of

production coefficients. On the other hand, the translog production function is more flexible and

less restrictive with regard to, for example, the output elasticities and the elasticity of substitution

between input factors. However, it requires the estimation of a high number of parameters, which

potentially implies collinearity problems. In our application, the Cobb-Douglas functional form has

one distinct advantage compared to the translog case: Since output cannot be measured in physical

quantities but is proxied by deflated sales (based on an industry-level output deflator), the pro-

duction function coefficients may be biased when the firms operate in an imperfectly competitive

environment (Klette and Griliches, 1996).

The Cobb-Douglas model assumes that all firms have the same output elasticities, hence this

potential output price bias is at least the same for all firms.18 In the main analysis of the paper, we

therefore assume a Cobb-Douglas production function, and we later check the robustness of results

with regard to a translog functional form.

When assuming the functional form F (.) in Equation (1) to be Cobb-Douglas and taking loga-

rithms on both sides of the equation, we get the following regression equation:

qit = β0 + βkkit + βllit + βmmit + ωit + εit, (2)

where qit, kit, lit, mit, and ωit are the logarithmic output, inputs and TFP respectively, and εit

is an additive error term. If the TFP is observed by the firm (for instance, management skills

or employed technology), firms’ input decisions may depend on ωit. To deal with this potential

endogeneity problem, we follow the methodology by Ackerberg et al. (2015). They employ a semi-

parametric approach building on Olley and Pakes (1996) and Levinsohn and Petrin (2003) who

proxy unobserved time-varying productivity by investment respectively intermediate inputs under

18Note that in the empirical application, we estimate the production function separately by industry, implying that
the output price bias is the same for all firms in an industry when assuming a Cobb-Douglas production function.

10



certain identifying assumptions.

Productivity is assumed to evolve according to a (first-order) Markov process, where actual

productivity can be decomposed into expected productivity given the information set of firm i and

a random shock ξit. Since we are interested in the effect of robots on firm productivity later on, we

allow the change in the industry-level log robot stock 4robotsjt−1 to impact future productivity:

ωit = g(ωit−1,4robotsjt−1 ) + ξit.
19 (3)

The timing of input choices is as follows. Capital and labor are dynamic inputs that are costly

to adjust and therefore partly fixed in the short-run.20 By contrast, materials are non-dynamic and

freely adjustable. A firm decides upon its material input in period t after observing its productivity,

capital and labor. Additionally, we let material demand depend on the log change in robots and

firm-level log wages, as well as on country and time (by including country and year dummies Cc

and Y t respectively):

mit = f(ωit, kit, lit,∆robotsjt−1 ,wageit ,Cc,Y t).
21 (4)

Assuming that the firm-level material choice is a strictly increasing function of unobserved pro-

ductivity, f can be inverted such that ω is a function of observables:

ωit = f−1(mit, kit, lit,∆robotsjt−1 ,wageit ,Cc,Y t). (5)

The production function in Equation (2) can thus be rewritten as

qit = β0 + βkkit + βllit + βmmit + f−1(·) + εit

= Φ(kit, lit,mit,∆robotsjt−1 ,wageit ,Cc,Y t) + εit. (6)

The estimation procedure is performed separately for 2-digit NACE Revision 2 industries. In the

first stage, Φit is approximated by a cubic polynomial and Equation (6) is estimated by ordinary

least squares (OLS).22 To account for measurement error in the capital stock, kit is instrumented

19The idea to incorporate the policy variables of interest in the productivity process follows De Loecker (2013) who
includes a firm’s exporting experience, and is also applied by for example Brandt et al. (2017) and Doraszelski and
Jaumandreu (2018).

20In contrast to Olley and Pakes (1996) and Levinsohn and Petrin (2003), Ackerberg et al. (2015) allow labor to
have dynamic implications. As the labor markets in our sample of European countries are rather rigid, this seems to
be a reasonable assumption.

21We follow De Loecker and Scott (2016) and exploit firm-level wages (i.e., variation in firm-specific input prices)
in order to deal with the identification problem in the production function estimation when using intermediate inputs
as a proxy for productivity (Gandhi et al., 2016).

22More specifically, Φit is approximated by a linear combination of its arguments, with a cubic polynomial in
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with lagged investment (Collard-Wexler and De Loecker, 2016). In this stage the production input

coefficients are not identified. However, we obtain an estimate of the output net of εit which is

utilized to express productivity as

ωit = Φ̂it − βkkit − βllit − βmmit. (7)

In the second stage, we use the law of motion in Equation (3) and the assumptions on the timing

of inputs to specify the moment conditions:

E

ξit(βk, βl, βm)


iit−1

lit

mit−1


 = 0, (8)

and identify the production function parameters by applying the generalized method of moments

(GMM).23 In doing so, g is approximated by a 3-order polynomial in its arguments. TFP can then

be calculated with the formula in Equation (7).

We follow De Loecker and Warzynski (2012) to measure a firm’s markup. Assuming cost-

minimizing firms, the markup can be derived as

µit =
βm
αm
it

, (9)

where βm denotes the output elasticity of materials as in Equation (2), and αm
it is the share of

material expenditures in total sales.24 The markup is therefore positive if the output elasticity of a

variable factor of production is greater than its sales share. We compute markups using the estimated

output elasticity of materials and the share of material costs in total sales, which is directly observed

in the data. Like De Loecker and Warzynski (2012), we divide total sales by the predicted error

term obtained in the first stage of the production function estimation exp(ε̂it) to eliminate variation

in the sales share that is not related to factors affecting input demand.

3.2 Evaluating the effects of robots

Within the context of the production function estimation, current productivity is assumed to be a

function of lagged productivity and the lagged change in robots (see Equation 3). We approximate

capital, labor, materials, and the log change in robots.
23Note, as already mentioned above, we use lagged investment to instrument for the current capital stock (Collard-

Wexler and De Loecker, 2016).
24Note that we use materials as the variable factor of production, as labor is assumed to be a dynamic input

characterized by adjustment costs.
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this function by a cubic polynomial in its arguments, thus allowing the effect of robots to depend

on the level of firm productivity.

The baseline regression equation to evaluate the impact of robots can be derived from the linear

version of Equation (3), by repeatedly inserting the expression for productivity and bringing lagged

productivity to the left-hand side of the equation. The change in productivity between period t and

t− s is therefore a function of baseline productivity in period t− s and the (lagged) s period change

in robots:

ωit = α0 + α1ωit−1 + β1(robotsjt−1 − robotsjt−2 ) + ξit

⇔4sωit = α0 + (α1 − 1)ωit−s + β1 4s robotsjt−1 +4sξit. (10)

Consistent with Equation (10), the impact of robots is analyzed using the following baseline

specification:

4syijct = γ0 + γ1yijct−s + δ4s robotsjct−1

+ θ4s Zjct−1 + ζWjct−s +Cc + Y t +4sνijct, (11)

where 4syijct = yijct − yijct−s denotes the s period change in the outcome of interest for firm i in

industry j in country c at time t (for instance, log TFP or log markups).

4sZjct−1 is a vector controlling for concurrent changes at the industry level that may bias the

effects of robots. It includes other technologies and measures for innovation, namely the log changes

in ICT, computer software and databases, and R&D, respectively. In addition, we take into account

globalization with the log changes in imports and exports and the change in the share of inward FDI,

and further control for the change in the capital-to-labor ratio. Initial industry controls Wjct−s,

that are the baseline capital-to-labor ratio and log wages, are also included as control variables.25

Moreover, country dummies Cc and year dummies Y t allow for country- and time-specific trends.

We use overlapping differences – in the main specification five-year differences – and cluster standard

errors at the country-industry pair level (Bloom et al., 2016). The regressions are estimated by OLS,

while in Section 4.3 we also experiment with instrumental variables (IV) estimators.

In line with the productivity process assumed within the context of the production function

estimation, we allow the impact of robots to depend on firm-level TFP (or another outcome of

interest, for instance markups). Heterogeneous effects of robots are calculated by interacting the

change in robots with dummy variables for different percentiles of the lagged outcome of interest, in

25The choice of control variables is inspired by Graetz and Michaels (2018).

13



the following equation exemplified on the basis of quintiles:

4syijct = δ1(4srobotsjct−1 ×Quin1ijct−s)

+ · · ·+ δ5(4srobotsjct−1 ×Quin5ijct−s) + · · ·+4sνijct, (12)

where, for example, Quin1ijct−s is equal to one if the lagged outcome of interest yijct−s for firm i is

smaller or equal than the 20th percentile of that outcome considering all firms in the same country,

industry, and year, and zero otherwise.26 The regression equation additionally contains the dummy

variables Quin1ijct−s to Quin5ijct−s themselves and the control variables as defined in Equation

(11).27 This specification allows me to evaluate the distributional effects of robots by analyzing how

a change in the robot stock affects the different parts of the distribution of firm-level outcomes.

4 Empirical results

4.1 Production function estimation

In this subsection, we present the results of the production function estimation. The focus is on

firm-level TFP and markups, the outcome variables for the main analysis of the paper.

The production function estimation is performed separately for 2-digit NACE Revision 2 man-

ufacturing industries. Some industries are pooled, so that the industry aggregation matches the

robot data.28 Appendix Table A.1 presents the estimated production function coefficients for labor,

materials and capital, with returns to scale ranging between 0.96 and 1.02. When estimating the

production functions and throughout the analysis of the paper, the log robot stock is calculated as

ln(Robots + 1) to take account of zeros in the data, especially in the first years of the sample pe-

riod. As we proceeded for the firm-level variables from the Amadeus database to deal with extreme

outliers, we delete the lower and upper 0.5% quantile of estimated markups and TFP.

Figure 2 depicts the evolution of average firm-level TFP from 2004 to 2013 by ISIC Rev. 4 in-

dustries, where the average TFP is weighted by firm sales. For each industry and year, we calculate

the average log change in TFP relative to 2004, so the changes can approximately be interpreted

in percentage terms.29 We generally observe a rise in productivity until the beginning of the finan-

cial crisis and a sharp decrease afterwards, which is only partly recovered until 2013. Out of 14

26The aggregation level of industries in these country-industry-year cells is the same as for the robots variable.
27Note that Equation (12) does not include the lagged outcome of interest yijct−s when controlling for the dummy

variables Quin1ijct−s to Quin5ijct−s .
28Note that, at the 2-digit level, the NACE Rev. 2 industry classification is equivalent to the ISIC Rev. 4, which

is the industry classification of the robot data.
29The sample in Figure 2 includes firms which are present in the data for at least five years. This is done because

the Amadeus database cannot clearly identify the entry and exit of firms, as mentioned in Section 2.2.

14



Figure 2: Industry-level evolution of TFP.

Note. The figure displays the evolution of average firm-level TFP from 2004 to 2013 by ISIC Rev. 4 industries, where the
average TFP is weighted by firm sales. For each industry and year, we calculate the average log change in TFP relative to
2004. Sources: Amadeus, IFR, OECD Stan, Eurostat SBS, own calculations.

manufacturing industries, eight industries are characterized by higher average productivity in 2013

compared to 2004.

The industry with the highest average productivity increase in the observation period is the

manufacture of pharmaceuticals and cosmetics (roughly 23%), followed by electronics, textiles, and

motor vehicles. It is important to keep in mind that we measure revenue-based instead of physical

productivity due to the lack of firm-level data on physical quantities. We account for price effects

by using an industry-level output deflator. Nevertheless, the estimated productivity measure might

reflect, apart from technical efficiency, heterogeneity across firms with regard to, for example, demand

shifts or market power.30

These average industry-level evolutions of TFP are not necessary representative for performance

of the most productive firms at the technological frontier within the industry. And indeed, Figure 3

illustrates the upper half of the TFP distribution for two exemplary manufacturing industries, which

are picked because those two cases are also characterized by vastly different degrees of robotization.

30See, for instance, Forlani et al. (2016).
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(a) Motor vehicles

(b) Other non-metallic mineral products

Figure 3: Evolution of TFP percentiles.

Note. The figure displays the evolution of different percentiles of the TFP distribution from 2004 to 2013, exemplarily for two
manufacturing industries which are characterized by a different degree of robotization: motor vehicles (high increase in the
robot density, Panel a) and other non-metallic mineral products (low increase in the robot density, Panel b). The percentiles
are calculated using sales weighted firm-level TFP. Sources: Amadeus, IFR, OECD Stan, Eurostat SBS, own calculations.
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Figure 4: Industry-level evolution of markups.

Note. The figure displays the evolution of average firm-level markups from 2004 to 2013 by ISIC Rev. 4 industries, where
the average markup is weighted by firm sales. Sources: Amadeus, IFR, OECD Stan, Eurostat SBS, own calculations.

The automotive industry (Panel a) experienced a considerable rise in the robot density between

2004 and 2013, while there was virtually no change in the manufacture of other non-metallic mineral

products such as ceramic and glass products (Panel b). In the more robotized automotive industry,

the 90th percentile of the TFP distribution has dis-proportionally increased compared to the 75th

percentile and the median. In contrast, in the non-robotized ceramic and glass industry, the upper

decile has grown by less than the median productivity.

Those two examples, therefore, suggest that the emergence of the superstar pattern in produc-

tivity growth (higher growth in firms that are already highly productive) coincides with a higher

degree of robotization, and we will investigate this link more closely below.

The industry-level evolution of average markups is displayed in Figure 4, where the average

markup is weighted by firm sales.31 In line with Weche and Wambach (2018), we also find markups

have been falling in the course of the financial crisis in several industries. Since 2010 or so, however,

average markups tend to be increasing in almost all European manufacturing industries.

31As in Figure 2, the sample includes firms which are present in the data for at least five years.
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(a) Motor vehicles

(b) Electronics

Figure 5: Evolution of markup percentiles.

Note. The figure displays the evolution of different percentiles of the markup distribution from 2004 to 2013, exemplarily for
two manufacturing industries which are characterized by a different degree of robotization: motor vehicles (high increase in
the robot density, Panel a) and electronics (low increase in the robot density, Panel b). The percentiles are calculated using
sales weighted firm-level markups. Sources: Amadeus, IFR, OECD Stan, Eurostat SBS, own calculations.
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Figure 5 goes beyond the average and shows the evolution of markup percentiles, again for the

two industries that were highlighted before. In the automotive industry, where the number of robots

per thousand workers has increased substantially, the 75th and the 90th percentiles of markups

have grown more than the median (Panel a). In contrast, this pattern does not hold true for the

non-robotized electronics industry where especially the 90th percentile has strongly decreased in the

first years of the sample (Panel b). Again, we will investigate the link between robotization and

shifts in the within-industry distribution of firm-level markups more closely below.

4.2 Robots and the distribution of firm-level productivity and markups

This subsection presents the results on the impact of robots on TFP and markups. As outlined in

Section 3.2, the regression equation is estimated in differences, as we are interested in the effect of a

change in the robot stock on the change in firm-level outcomes. The estimation sample covers firm

observations with non-missing data on the variables of interest (i.e., TFP, markups, sales, and the

labor share), both in the first and in the last year of any five-year period between 2004 and 2013.

Table 2 shows the results for TFP. In the first two columns, we present the average effect of

robots controlling for country and year fixed effects, and including either the baseline TFP level

(column 1) or dummy variables for the quintiles of baseline TFP within country-industry-year cells

(column 2). The coefficients are close to zero and statistically insignificant at conventional levels.

This suggests that the average productivity across firms does not change when an industry gets more

robotized, ceteris paribus.

Columns (3) to (6) take a closer look how a change in the robot stock affects the different parts

of the productivity distribution within an industry. To do so, we interact the change in robots with

quintile or decile dummies based on the distribution of firm TFP at the beginning of the period.

The full specification is presented in the fifth column, where we control for other changes at the

industry level (for instance, other technologies and globalization) as well as for baseline industry

characteristics. It reveals a rise in TFP for the top 20% of firms with highest initial productivity,

but an insignificant effect on the other firms in an industry. The evidence is corroborated by the

estimates in column (6), where TFP deciles are exploited to allow for a more fine-grained analysis.

There we observe the highest productivity gains for a set of firms at the productivity frontier – the

top 10% most productive firms within a country, industry, and year –, which are able to increase

their already high productivity even further.

Table 3 reports the results for markups. While the average effect is again not statistically

significant, the interaction terms with quintiles (column 5) and deciles (column 6) – calculated based

on a firm’s markup at the beginning of the period in that country and industry – show considerable
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Table 2: The effects of robots on TFP.

Dependent variable: 45 ln(TFP)

(1) (2) (3) (4) (5) (6)

45 ln(Robots) -0.0074 0.0059
(0.006) (0.005)

45 ln(Robots) x Quin1 -0.0030 -0.0046 -0.0025
(0.005) (0.005) (0.004)

x Quin2 0.0036 0.0020 0.0041
(0.005) (0.005) (0.004)

x Quin3 0.0049 0.0033 0.0054
(0.005) (0.005) (0.005)

x Quin4 0.0068 0.0051 0.0073
(0.005) (0.005) (0.005)

x Quin5 0.0176** 0.0160** 0.0183**
(0.008) (0.008) (0.008)

x Dec1 -0.0072
(0.005)

x Dec2 0.0024
(0.004)

x Dec3 0.0026
(0.004)

x Dec4 0.0058
(0.004)

x Dec5 0.0041
(0.005)

x Dec6 0.0068
(0.005)

x Dec7 0.0058
(0.005)

x Dec8 0.0090*
(0.005)

x Dec9 0.0128*
(0.007)

x Dec10 0.0241**
(0.011)

Country, year dummies X X X X X X
45 other technologies X X X
45 other industry changes X X
Industry controls in t− 5 X X
Dep. variable in t− 5 X
Dummies for quintiles X X X X
Dummies for deciles X

Note. Based on 110,710 firm observations. We estimate the effect of the log change in the industry-level robot stock on
the log change in firm-level TFP by OLS using overlapping five-year differences. Column (1) includes the baseline log TFP
as well as country and year dummies. In column (2), instead of the baseline log TFP level, quintile dummy variables are
included. For instance, Quin2 = 1 if ln(TFP )ijct−5 > p20 and ln(TFP )ijct−5 ≤ p40 and 0 otherwise, where p20 and p40
represent the first and second quintiles of firm-level TFP within a country c, industry j, and year t. In the columns (3)–(6),
we estimate heterogeneous effects by interacting the change in robots with the dummy variables for the quintiles (columns
3–5) or deciles (column 6) of baseline TFP. Column (4) adds the log changes in investments in ICT, R&D, and computer
software and databases, respectively. Column (5) further includes other industry controls: the log changes in imports and
exports, the change in the market share of foreign-owned firms, the change in the capital-to-labor ratio, as well as baseline log
wages and the capital-to-labor ratio. Standard errors clustered by country x industry in parentheses. Levels of significance:
*** 1%, ** 5%, * 10%. Sources: Amadeus, IFR, OECD Stan, Eurostat SBS, EU KLEMS, Comtrade, own calculations.
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heterogeneity between firms. A large fraction of firms actually decrease their markups on average

when more robots are installed. At the same time, we observe a rise in markups for the top 10% of

firms with highest initial markups.

The empirical observation that high markup firms are able to charge even higher markups while

the opposite is true for less profitable firms has profound implications for the distribution of market

power within industries. It gets more skewed towards firms charging high markups, which is in line

with the evolution described in De Loecker and Eeckhout (2017) and Calligaris et al. (2018).

The results presented so far indicate that the expansion of industrial robots as a form of tech-

nological change dis-proportionally benefits the ”best firms” within an industry, with the highest

productivity and markups, which are able to get even more productive and charge higher markups.

One explanation for these findings is related to the returns of technology adoption, as studied

in the context of innovation-induced gains from trade liberalization (e.g.: Lileeva and Trefler, 2010;

Bustos, 2011; Bertschek et al., 2015). A firm will invest in a productivity-enhancing technology

if the expected gains from a reduction in marginal costs of production are greater than the fixed

costs of adoption. Since the benefit of technology adoption increases in revenues, the (cost-intensive)

investment in industrial robots is most profitable for firms which expect high revenues after robot

installation. Highly productive firms, which are able to set prices well above marginal costs, might

therefore especially forge ahead in and benefit from robotization. This explanation is also consistent

with the results in Section 5, where we show that only large firms in terms of sales are able to boost

sales further when their industry gets more robotized.

Table A.2 in the appendix demonstrates that the estimated effects of robots on the distribution

of firm-level productivity and markups within industries are robust when allowing for heterogeneity

in the impact of the other technology and innovation measures in the data (i.e., ICT, R&D, and

computer software and databases). In the columns (1) and (3), we replicate the results of the full

specifications in column (5) of Table 2 and Table 3 respectively. Columns (2) and (4) show that

the impact of robots remains very similar when adding interaction terms between the changes in

investments in the other technology types and the dummy variables for the quintiles of baseline

TFP respectively markups. Moreover, these results illustrate that the effects on TFP and markups

differ across the technology and innovation measures. For ICT, software and databases, and R&D

– in contrast to industrial robots – we do not identify a superstar phenomenon, in the sense that

they do not dis-proportionally benefit the very productive firms and those which already enjoy the

highest market power. One explanation may be that ICT as well as software and databases are

nowadays already widely used since the fixed costs of adoption have fallen dramatically during the

past decades. In addition, these technologies might have a bigger impact in service industries than
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Table 3: The effects of robots on markups.

Dependent variable: 45 ln(Markup)

(1) (2) (3) (4) (5) (6)

45 ln(Robots) -0.0186 -0.0139
(0.012) (0.012)

45 ln(Robots) x Quin1 -0.0232* -0.0224* -0.0272**
(0.014) (0.013) (0.010)

x Quin2 -0.0277** -0.0269** -0.0317***
(0.014) (0.012) (0.010)

x Quin3 -0.0181 -0.0172 -0.0219**
(0.013) (0.012) (0.010)

x Quin4 -0.0188 -0.0179 -0.0228**
(0.013) (0.011) (0.009)

x Quin5 0.0188* 0.0197* 0.0147*
(0.011) (0.010) (0.008)

x Dec1 -0.0285***
(0.010)

x Dec2 -0.0257**
(0.011)

x Dec3 -0.0326***
(0.010)

x Dec4 -0.0306***
(0.011)

x Dec5 -0.0239**
(0.011)

x Dec6 -0.0198**
(0.009)

x Dec7 -0.0258**
(0.010)

x Dec8 -0.0195**
(0.009)

x Dec9 -0.0119
(0.009)

x Dec10 0.0422***
(0.011)

Country, year dummies X X X X X X
45 other technologies X X X
45 other industry changes X X
Industry controls in t− 5 X X
Dep. variable in t− 5 X
Dummies for quintiles X X X X
Dummies for deciles X

Note. Based on 110,710 firm observations. We are interested in the impact of the log change in the industry-level robot
stock on the log change in firm-level markups. The regression equations are estimated by OLS using overlapping five-year
differences. The specification in column (1) controls for the baseline log markup in period t − 5 as well as for country
and year dummies. In column (2), instead of the baseline markup, dummy variables for the quintiles of baseline markups
within country-industry-year cells are included. In the columns (3)–(6), we estimate heterogeneous effects by interacting
the change in robots with the dummy variables for the markup quintiles (columns 3–5) or deciles (column 6). Column (4)
adds the log changes in other technologies, and column (5) further includes other industry changes as well as initial industry
characteristics. See Table 2 for a detailed description of control variables. Standard errors clustered by country x industry in
parentheses. Levels of significance: *** 1%, ** 5%, * 10%. Sources: Amadeus, IFR, OECD Stan, Eurostat SBS, EU KLEMS,
Comtrade, own calculations.
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in our sample of manufacturing firms.

4.3 Robustness checks

In this subsection, we discuss several robustness checks and how they affect the main results. The

checks are applied to the heterogeneous effects specification, where the log change in robots is

interacted with quintile dummies. The results are presented in Table 4.

Robot density The first robustness check concerns the construction of the main variable of in-

terest, the change in robots. A small number of papers have already exploited the robot data set

from the IFR to mainly analyze labor market effects (e.g.: Acemoglu and Restrepo, 2017; Dauth

et al., 2018), but also a broader set of outcomes including productivity (Graetz and Michaels, 2018).

These contributions estimate the effect of robots by relying on the change in the robot density,

which is defined as the change in robots per thousand workers in the baseline year. We do not

use this measure in our main specification as the baseline regression equation (11) could no longer

be derived from the productivity process assumed within the context of the production function

estimation (at least not when utilizing baseline employment for normalization). Nevertheless, we

use the change in the robot density as an alternative measure, in order to show that our results

are consistent with the previous literature. The estimates in column (1) for TFP (Panel A) and for

markups (Panel B) confirm our main findings as they clarify the dis-proportional impact of robots

on the superstar firms in an industry.32 Graetz and Michaels (2018) analyze the long-run impact

of robots on average industry-level TFP and find a positive and significant effect using differences

between 1993 and 2007 (see their Table 2). While the average influence of robots on TFP is small

and statistically insignificant in our setting using five-year differences, the positive outcome for high

productive firms is roughly in the same ballpark as in Graetz and Michaels (2018).33

Industry-specific trends Another concern are industry-specific trends that are correlated both

with robotization and with changes in productivity and market power. We already try to mitigate

this concern by controlling for a set of concurrent developments at the industry-level such as other

technologies, globalization variables, and the capital-to-labor ratio. A more rigorous approach is to

include industry dummies in order to allow for industry-specific trends in the difference equation.

Column (2) reports the estimated coefficients. Even though we can exploit less variation in the data

to identify the effects, the results hold as they are of similar magnitude and highly significant.

32Note that we also employ the robot density instead of the log robot stock in the production function estimation.
The estimated production function coefficients are reported in Appendix Table A.3.

33The robustness checks for the baseline models without heterogeneous effects are available upon request. Bear in
mind that their measure of robot adoption is divided by one hundred
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Table 4: Robustness checks.

Density Ind. dummies Not lagged 44 43 Translog IV, set A IV, set B

(1) (2) (3) (4) (5) (6) (7) (8)

[A] 4 ln(TFP)

4 Robots x Quin1 -0.0009* -0.0068 0.0009 -0.0101** -0.0166*** 0.0006 -0.0014 0.0003
(0.000) (0.006) (0.005) (0.005) (0.004) (0.004) (0.008) (0.006)

x Quin2 0.0000 -0.0002 0.0056 -0.0038 -0.0127*** 0.0053 0.0036 0.0054
(0.001) (0.005) (0.004) (0.005) (0.004) (0.005) (0.008) (0.007)

x Quin3 0.0007 0.0010 0.0069 0.0007 -0.0056 0.0079 0.0040 0.0057
(0.001) (0.005) (0.005) (0.005) (0.004) (0.005) (0.007) (0.007)

x Quin4 0.0005 0.0030 0.0087* 0.0004 -0.0068 0.0085* 0.0055 0.0075
(0.001) (0.005) (0.005) (0.006) (0.004) (0.005) (0.007) (0.006)

x Quin5 0.0025** 0.0140** 0.0201** 0.0122 0.0036 0.0101* 0.0117 0.0167
(0.001) (0.007) (0.008) (0.008) (0.007) (0.006) (0.014) (0.012)

[B] 4 ln(Markup)

4 Robots x Quin1 -0.0032*** -0.0215** -0.0247** -0.0273*** -0.0257*** -0.0223*** -0.0120 -0.0179
(0.001) (0.009) (0.011) (0.009) (0.009) (0.008) (0.012) (0.011)

x Quin2 -0.0025** -0.0260*** -0.0290*** -0.0260*** -0.0224*** -0.0154** -0.0232* -0.0265**
(0.001) (0.008) (0.010) (0.009) (0.008) (0.006) (0.012) (0.012)

x Quin3 -0.0025** -0.0164** -0.0166* -0.0153** -0.0124** -0.0125** -0.0170 -0.0189*
(0.001) (0.008) (0.010) (0.007) (0.006) (0.005) (0.011) (0.011)

x Quin4 -0.0021* -0.0173** -0.0175* -0.0030 -0.0053 -0.0086 -0.0187* -0.0177
(0.001) (0.008) (0.010) (0.006) (0.006) (0.006) (0.011) (0.011)

x Quin5 0.0022 0.0202** 0.0168** 0.0305*** 0.0287*** -0.0067 0.0081 0.0142
(0.001) (0.008) (0.008) (0.008) (0.009) (0.006) (0.013) (0.011)

N 110,727 110,710 114,140 171,570 228,313 109,679 110,710 110,710

Note. Based on N firm observations. This table presents robustness checks for the heterogeneous effects of robots on TFP (Panel A) and on markups (Panel B), based on the
specifications in column (5) of Table 2 respectively Table 3. Column (1) uses the change in the robot density – the change in robots per thousand workers – instead of the log
change in robots as the main variable of interest. In column (2), we add industry dummies to control for industry trends. Columns (3)–(5) check the robustness with regard
to timing issues, by not lagging the log change in robots (column 3), and by using four-year (column 4) and three-year (column 5) instead of five-year differences. Column
(6) assumes a translog rather than a Cobb-Douglas production function in estimating TFP and markups. In columns (7) and (8), the industry-level robot stock in the sample
countries is instrumented with robot installations in the US and the UK (set A), or in the US, the UK, Norway, Belgium, Portugal, and Austria (set B), and over-identified
models are estimated by 2SLS. Standard errors clustered by country x industry in parentheses. Levels of significance: *** 1%, ** 5%, * 10%. Sources: Amadeus, IFR, OECD
Stan, Eurostat SBS, EU KLEMS, Comtrade, own calculations.
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Timing The next set of robustness checks refers to timing issues. First, in our main specification,

the change in robots is lagged by one period, due to the assumptions on the productivity process

(see Equation 10). In column (3), we instead use the same time period in constructing the change

in outcomes and the change in the robot stock. The results remain similar, so the main findings do

not hinge on the assumed lag structure.34 Second, rather than estimating the regression equation in

five-year differences, we try changes of four (column 4) and three years (column 5). The effects on

markups are highly significant and emphasize the heterogeneous impact of robots. The estimates

for TFP point into the same direction, but are smaller in magnitude and less significant.

Translog production function The results discussed so far assume a Cobb-Douglas gross output

production function in estimating TFP and markups. In order to allow for more flexibility, we

consider a translog production function:

qit = β0 + βkkit + βllit + βmmit + βklkitlit + βkmkitmit + βlmlitmit

+ βkkk
2
it + βlll

2
it + βmmm

2
it + βklmkitlitmit + ωit + εit, (13)

where output may depend non-linearly on input factors. It is more flexible, as output elasticities

are not specific to industries but vary across firms and time. In addition, a firm’s markup (within

an industry) does not only depend on its material share in total sales, but also on the firm-specific

output elasticity of materials. A drawback of this specification, as explained in Section 3.1, is the

potential output price bias that is more relevant than in the Cobb-Douglas case. In addition, the

high number of parameters to be estimated may lead to collinearity problems. Appendix Table A.4

reports the estimated production function coefficients, which are broadly consistent with the ones

obtained when assuming a Cobb-Douglas production function. After recalculating markups and

TFP, the effects of robots are presented in column (6) of Table 4. The results confirm our main

findings, with the exception of the impact on high markup firms. While we still observe that a

change in robots is associated with decreasing markups for low and medium markup firms, we do

not identify a positive effect for firms with initially high markups. Nevertheless, it is consistent with

the main findings insofar, as robotization does not affect all firms in an industry equally.

Instruments We identify the effects of robots on industry-level productivity and markups by care-

fully controlling for various confounding factors. Above all, we account for other types of technology

34In this specification, we stick to the estimated TFP and markups that are based on the production function
estimation where current productivity is a function of the lagged change in robots. In another robustness check, we
instead incorporate the current change in robots and run again the specification in column (3) of Table 4. The results
are very similar and are available upon request. Note that we also do not lag the other industry-level changes in this
specification.
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and innovation that may be correlated with robot densification and at the same time affect produc-

tivity or markups. Furthermore, we consider additional concurrent developments at the industry

level and baseline industry characteristics, as well as country, time, and industry trends. And by

estimating the regression equation in differences, unobserved confounders which are constant over

the considered period (five years in the main specification) cannot bias the results. Nevertheless,

one might still worry about other omitted variables, measurement error, or reverse causality. For

example, concerning the latter, it might be that the implementation of robots is the result of an

increasing presence of superstar firms, and not the other way round. To address these concerns, we

adopt an IV approach in the spirit of Acemoglu and Restrepo (2017), who employ robot adoptions

across industries in European countries as an instrument for robotization in the US.35

We instrument the industry-level robot stock in the six European countries with robot installa-

tions in the US and the United Kingdom (UK), and estimate an over-identified model using two-stage

least squares (2SLS). The idea of this instrumental strategy is to capture the component of robot

adoption that is due to a general technology trend, thus eliminating unobserved domestic shocks. In

another specification, we additionally exploit robot installations in Norway, Belgium, Portugal, and

Austria, as these are the countries for which we have comprehensive robot data at the industry level

from 2004 onwards. The drawback of the latter set of instruments is that some of these countries are

direct neighbors of the sample countries, and hence the exogeneity assumption might be violated.

Column (7) of Table 4 summarizes the results of the IV specification using industry-level robots

in the US and the UK as instruments (instrument set A). In line with the OLS estimates, we find that

an increasing number of robots benefit the most productive and the most profitable firms. Column

(8) exploits the whole set of possible instrument countries (instrument set B), and the results are

similar. Appendix Table A.5 presents the first stage results. The F-Tests on excluded instruments

(Panel A) and the Kleibergen-Paap weak identification tests (Panel B) suggest that we do not need

to worry about weak instruments for the instrument set B, but we may have some concerns for the

instrument set A where the F-Statistics for the joint significance of instruments in the first stage

are below 10. In Panel C, we implement the same test statistics for the baseline specification, i.e.,

for the model without allowing for heterogeneous effects of robots. The results are reassuring as

the excluded instruments are jointly highly significant for both instrument sets, and the Kleibergen-

Paap statistics are above the critical values for a 10% maximal IV bias of the weak identification

test proposed by Stock and Yogo (2005).36

35This IV strategy has also been implemented by Dauth et al. (2018) to analyze the labor market effects of robots
in Germany.

36The critical values for a 10% maximal IV bias are 19.93 for two instrumental variables and 29.18 for six instru-
mental variables (Stock and Yogo, 2005). Note that the Stock-Yogo critical values are not available for five endogenous
regressors.

26



5 Industry concentration and the labor share

This section presents the results on the impact of robots on industry concentration and the labor

share. First, we estimate the effects of robots on firm-level sales in the same way as in Section 4

for productivity and markups. In particular, we are interested in the heterogeneity with regard to

initial levels of firm sales within country-industry-year cells. Second, we investigate the effects of

robots on the industry-level labor share. The focus lies on the reallocation mechanism proposed by

Autor et al. (2017a,b), i.e., the increased concentration of sales in firms with a small labor share.

Table 5 reports the results for sales. In the first two columns, we present the average impact

of robots, controlling for country and year fixed effects. The estimated coefficients are positive and

significant, suggesting that average sales increase when an industry gets more robotized, ceteris

paribus. However, the average effects are driven by large firms with high sales, as shown in the

full specifications in the columns (5) and (6). These firms are able to boost sales further, while

small firms experience a significant decline in their sales.37 This finding points out the potential

of a recent form of automation technology in increasing sales concentration within industries and

thereby triggering winner take most dynamics, consistent with Bessen (2017).

What is the role of rising sales concentration in the falling labor share observed in many countries

over the last decades, and do industrial robots contribute to this development? In Panel A of Table

6, we display the average firm-level labor share (i.e., total labor costs over sales) by sales quintiles

which are defined within a country, industry, and year. The average labor share decreases as a

function of sales: while the lowest sales quintile pays on average 28% of their sales to workers, it is

only 16% for the highest quintile. Hence, if firms with already high sales manage to disproportionally

increase their sales further, the industry-level labor share will decrease because of the reallocation

of production towards these low labor share firms. Since we have identified this pattern of sales in

Table 5 as a result of industry-level robotization, we analyze in Panel B of Table 6 the impact of

robots on the aggregate labor share. In doing so, we rely on the baseline specification (see Equation

11) where the outcome of interest is the five-year change in the labor share at the country-industry-

year level. The aggregate labor share is calculated either based on unweighted averages (columns

1–3) or on averages weighted by firm sales (columns 4–6). The OLS regression in column (1) shows

that the unweighted labor share does not decline significantly when more robots are installed in an

industry. In contrast, we do observe a significant drop in the sales-weighted labor share (column 4).

These results hold when the industry-level robot stock is instrumented with robot installations in

the US and the UK (columns 2 and 5), or additionally in Norway, Belgium, Portugal, and Austria

37See Appendix Table A.6 for the robustness checks with regard to the heterogeneous effects of robots on sales,
and Appendix Table A.7 for the first stage results of the IV estimations.
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Table 5: The effects of robots on sales.

Dependent variable: 45 ln(Sales)

(1) (2) (3) (4) (5) (6)

45 ln(Robots) 0.0562** 0.0417*
(0.024) (0.022)

45 ln(Robots) x Quin1 -0.0132 -0.0152 -0.0390**
(0.018) (0.019) (0.017)

x Quin2 0.0328 0.0308 0.0072
(0.022) (0.023) (0.018)

x Quin3 0.0502* 0.0482* 0.0250
(0.027) (0.027) (0.023)

x Quin4 0.0696** 0.0675** 0.0447**
(0.027) (0.027) (0.022)

x Quin5 0.0697** 0.0677** 0.0449*
(0.027) (0.027) (0.025)

x Dec1 -0.0720***
(0.021)

x Dec2 -0.0054
(0.019)

x Dec3 0.0058
(0.019)

x Dec4 0.0087
(0.018)

x Dec5 0.0206
(0.023)

x Dec6 0.0294
(0.023)

x Dec7 0.0431*
(0.023)

x Dec8 0.0463**
(0.021)

x Dec9 0.0508**
(0.023)

x Dec10 0.0391
(0.030)

Country, year dummies X X X X X X
45 other technologies X X X
45 other industry changes X X
Industry controls in t− 5 X X
Dep. variable in t− 5 X
Dummies for quintiles X X X X
Dummies for deciles X

Note. Based on 110,710 firm observations. We are interested in the impact of the log change in the industry-level robot stock
on the log change in firm-level sales. The regression equations are estimated by OLS using overlapping five-year differences.
The specification in column (1) controls for baseline log sales in period t − 5 as well as for country and year dummies. In
column (2), instead of baseline sales, dummy variables for the quintiles of baseline sales within country-industry-year cells
are included. In the columns (3)–(6), we estimate heterogeneous effects by interacting the change in robots with the dummy
variables for the sales quintiles (columns 3–5) or deciles (column 6). Column (4) adds the log changes in other technologies,
and column (5) further includes other industry changes as well as initial industry characteristics. See Table 2 for a detailed
description of control variables. Standard errors clustered by country x industry in parentheses. Levels of significance: ***
1%, ** 5%, * 10%. Sources: Amadeus, IFR, OECD Stan, Eurostat SBS, EU KLEMS, Comtrade, own calculations.
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Table 6: The effects of robots on the labor share.

[A] Firm-level labor share by sales quintiles

Quin1 Quin2 Quin3 Quin4 Quin5

Mean 0.28 0.24 0.21 0.18 0.16
Std. dev. 0.13 0.12 0.11 0.10 0.09

N 22,282 22,141 22,145 22,140 22,002

[B] Regressions at the industry level

45 Labor share

Unweighted Weighted by firm sales

(1) (2) (3) (4) (5) (6)
OLS IV, set A IV, set B OLS IV, set A IV, set B

45 ln(Robots) -0.0022 -0.0020 -0.0018 -0.0041** -0.0061** -0.0050**
(0.002) (0.002) (0.002) (0.002) (0.003) (0.002)

N 326 326 326 326 326 326

Country, year dummies X X X X X X
45 other technologies X X X X X X
45 other industry changes X X X X X X
Industry controls in t− 5 X X X X X X
Dep. variable in t− 5 X X X X X X

Note. Number of observations N . The firm-level labor share is defined as total labor costs over sales. Panel A presents
summary statistics of the labor share by sales quintiles, where Quin1 represents the first quintile group. As defined in Table
5, firms are classified into five groups based on their baseline sales within a country, industry, and year. In Panel B, the labor
share is aggregated to the country-industry-year level, using either unweighted averages or averages weighted by firm sales.
We are interested in the impact of the (one-period lagged) log change in the industry-level robot stock on the change in the
unweighted (columns 1-3) and weighted (columns 4-6) industry-level labor share. The regression equations are estimated
using (overlapping) five-year differences. Columns (1) and (4) present OLS estimations. Columns (2)-(3) as well as columns
(5)-(6) present IV estimations where over-identified models are estimated using 2SLS. The industry-level robot stock in the
sample countries is instrumented with robot installations in the US and the UK (set A), or in the US, the UK, Norway,
Belgium, Portugal, and Austria (set B). The regressions include the full set of control variables as described in Table 2.
Standard errors are clustered by country x industry in parentheses. Levels of significance: *** 1%, ** 5%, * 10%. Sources:
Amadeus, IFR, OECD Stan, Eurostat SBS, EU KLEMS, Comtrade, own calculations.

(columns 3 and 6).38 The estimated effects of robots on industry concentration and the labor share

are consistent with the evidence in Autor et al. (2017a,b). We show that one potential explanation

for the falling labor income share is the growing use of industrial robots, which allows large firms

with a low labor share to increase their sales further, thus decreasing the aggregate labor share.

6 Conclusion

The rapid pace of technological change raises concerns about the rise of superstar firms, which

increasingly dominate markets. But empirical evidence for this superstar phenomenon, and in par-

38See Appendix Table A.8 for the corresponding first stage results. In all models, the excluded instruments are
jointly highly significant, and the Kleibergen-Paap statistics are above the critical values for a 10% maximal IV bias of
the weak identification test proposed by Stock and Yogo (2005). These critical values are 19.93 for two instrumental
variables and 29.18 for six instrumental variables (Stock and Yogo, 2005).
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ticular about the role of technology in shaping its emergence, is still in its infant stages.

In this paper, we have examined the impact of industrial robots – a recent form of a digital

automation technology – on the distribution of firm performance within industries. We exploit data

for six European countries from 2004 to 2013, and calculate heterogeneous effects by interacting the

change in the industry-level robot stock with baseline firm performance within country-industry-

year cells. The results indicate that an increase in robots implies a rise in firms’ productivity and

markups for those firms with initially high productivity and profitability, respectively, but has an

insignificant or even negative effect on the other firms in an industry. In addition, we show that large

firms in more robot exposed industries are able to boost their sales, while small firms experience a

significant decline. This reallocation of market shares tends to depress the aggregate labor share of

income, because the large and productive firms tend to exhibit lower firm-specific labor cost shares.

Robotization thus seems to dis-proportionally benefit the best firms in an industry, and thereby

contributes to several economic trends observed over the last decades, such as the divergence of

productivity and markups as well as shifts in the functional income distribution away from labor

and towards capital and profit earnings.

An increasing dispersion of productivity and markups across firms has broader implications for

society. As high productive firms typically pay higher wages in absolute terms, it may further

push up the wages of top earners in these firms, leading to a widening dispersion in household

incomes.39 Perhaps even more important, it may be firm and capital owners who benefit most

from the recent technology wave. Dauth et al. (2018) provide suggestive empirical evidence that

robotization increases productivity but not average wages. Our analysis emphasizes a key channel

through which industrial robots may affect the aggregate labor share: the reallocation of market

shares towards successful firms which tend to pay better in absolute terms, but at the same time

are able to keep a larger share of revenue as profits.

These economic trends call for an economic policy that supports productivity growth across the

broader economy, not just among top firms at the technological frontier, and distributes the rents

created by new technologies more equally. At the moment, asset ownership and the entitlement to

profit earnings is highly concentrated and unequally distributed. The effects of new technologies

on the functional income distribution (higher profit and lower labor income shares) then also im-

ply higher inequality in the personal income distribution. Useful policy steps to counteract those

distributional implications could be measures to foster profit-sharing, employee stock options, or

similar arrangements. Those instruments would aim for a wider distribution of asset ownership in

the society at large.

39See the discussion in Haldane (2017), and the empirical evidence in Berlingieri et al. (2017) who show that the
divergence of wages is linked to increasing differences between high and low productive firms.
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Our paper also lays out fruitful avenues for future research. This study takes a first step by pro-

viding novel evidence on the heterogeneous effects of one specific new technology (robots) on firm

performance, by observing installations of industrial robots at the industry level. More research on

other types of recent automation technologies is needed in order to comprehensively understand the

effects. So far, there is a lack of firm-level data on the use of robotics and artificial intelligence. Data

at the firm level would greatly enhance the understanding of how these technologies contribute to

firm-level productivity, which types of firms invest and what is the role of the market structure, and

how adoption affects firm strategies (Raj and Seamans, 2019). For future research, it might also

be interesting to understand how new technologies favor these superstar firms. For example, is it

slowing technological diffusion from frontier to laggard firms, or rather better worker-firm matching

in the sense that highly productive firms attract more skilled workers that are better in adapting to

technological advancements? Relatedly, future research might put emphasis on how technological

change increases productivity, in the sense whether it is factor-neutral or biased towards a specific

factor. While the productivity and industrial organization literature typically assumes that tech-

nology is Hicks-neutral, Doraszelski and Jaumandreu (2018) show a labor-augmenting component

using data on firms’ R&D expenditures in the Spanish manufacturing sector. With firm-level data

on technology adoption at hand, this may be an important line of research to follow.
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Guschanski, A. and Onaran, Ö. (2017). The political economy of income distribution: industry level

evidence from 14 OECD countries, Greenwich Papers in Political Economy No. 17518, University

of Greenwich, Greenwich Political Economy Research Centre.

Gutiérrez, G. and Philippon, T. (2017). Declining Competition and Investment in the U.S., NBER

Working Paper No. 23583, National Bureau of Economic Research.

Gutiérrez, G. and Philippon, T. (2018). How EU Markets Became more Competitive than US

Markets: A Study of Institutional Drift, NBER Working Paper No. 24700, National Bureau of

Economic Research.

Gutiérrez, G. and Philippon, T. (2019). Fading Stars, NBER Working Paper No. 25529, National

Bureau of Economic Research.

Haldane, A. G. (2017). Productivity puzzles, presented at the London School of Economics, 20

March 2017.

URL: https://www.bankofengland.co.uk/speech/2017/productivity-puzzles

Hall, R. E. (2018). New Evidence on the Markup of Prices over Marginal Costs and the Role of

Mega-Firms in the US Economy, NBER Working Paper No. 24574, National Bureau of Economic

Research.

Helpman, E., Melitz, M. J. and Yeaple, S. R. (2004). Export Versus FDI with Heterogeneous Firms,

American Economic Review 94(1): 300–316.

Hsieh, C.-T. and Klenow, P. J. (2009). Misallocation and Manufacturing TFP in China and India,

Quarterly Journal of Economics 124(4): 1403–1448.

Inklaar, R., Timmer, M. P. and van Ark, B. (2008). Market services productivity across Europe and

the US, Economic Policy 23(53): 140–194.

International Federation of Robotics (2016). World Robotics Industrial Robots 2016.

International Federation of Robotics (2018). Executive Summary World Robotics 2018 Industrial

Robots.

URL: https://ifr.org
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A Appendix

A.1 Data Appendix

SITC-ISIC cross-walk

In order to link the Comtrade data with the robot data from the IFR, we need to harmonize two

different industry classifications. The Comtrade data is provided according to the SITC Rev. 3

industry classification, while the IFR data is made available according to the ISIC Rev. 4 classifica-

tion. Since the latter is aggregated at the 2-digit level (with some industries even further aggregated,

see Table A.1), the breakdown by 2-digit industries is sufficient for our purposes. Hence, as the ISIC

Rev. 4 industry classification is equivalent to NACE Rev. 2 industries at the 2-digit level, we con-

vert the SITC Rev. 3 to the NACE Rev. 2 industry classification. This involves three cross-walks:

NACE Rev. 1.1 to NACE Rev. 2 (cross-walk A), NACE Rev. 1 to NACE Rev. 1.1 (cross-walk B),

and SITC Rev. 3 to NACE Rev. 1 (cross-walk C). Cross-walk C is provided by the World Bank

(https://wits.worldbank.org/product_concordance.html), while cross-walks A and B are given

by Eurostat

(http://ec.europa.eu/eurostat/ramon/relations/index.cfm?TargetUrl=LST_REL&StrLanguageCode=

EN&IntCurrentPage=10).

Cross-walks A and B are provided at the 4-digit industry level. However, since the cross-walk C

relates the SITC Rev. 3 industry codes to 3-digit NACE Rev. 1 industries, we also aggregate the

industries in cross-walks A and B to the 3-digit level. After doing this, cross-walk C is merged to

cross-walk B, and the result is in turn merged to cross-walk A. The resulting cross-walk between the

SITC Rev. 3 and the NACE Rev. 2 classifications includes ambiguous cases, where one SITC Rev. 3

industry is assigned to several NACE Rev. 2 industries. In order to tackle this problem of ambiguous

cases, we use employment data to approximate the size of each NACE industry, and construct the

employment share of each NACE code in all assigned codes as weights. More specifically, we employ

data on the industry level number of employees from Eurostat SBS in 2008, the year when the

NACE Rev. 2 was introduced. Since the employment data is not comprehensively available across

industries for all countries in our sample, average weights are calculated by relying on data from

Germany, Spain, and Italy. In a last step, the trade values at the 3-digit NACE level are aggregated

to 2-digit industries (and are therefore equivalent to ISIC Rev. 4 industries). Please note that for

some industries no employment data is available, namely for the NACE Rev. 2 industry groups A

(agriculture, forestry and fishing), O (public administration and defence), P (education), Q (human

health and social work activities), R (arts, entertainment and recreation), T (activities of households

as employers), and U (activities of extraterritorial organisations and bodies). We consider this as a
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rather minor issue, as these are not the industries for which we would expect much trade.

A.2 Appendix Tables

Table A.1: Estimated production function coefficients.

Production function coefficients

Industry Code Labor Materials Capital RTS

Food products, beverages, tobacco 10-12 0.23 0.68 0.10 1.00
Textiles, leather, wearing apparel 13-15 0.41 0.50 0.06 0.96
Wood and wood products 16 0.32 0.61 0.08 1.01
Paper and paper products 17-18 0.41 0.50 0.07 0.98
Other chemical products 19-20 0.29 0.63 0.10 1.01
Pharmaceuticals, cosmetics 21 0.35 0.60 0.03 0.99
Rubber and plastic products 22 0.24 0.65 0.07 0.97
Other non-metallic mineral products 23 0.36 0.56 0.10 1.02
Basic metals 24 0.31 0.62 0.05 0.99
Fabricated metals 25 0.44 0.45 0.10 0.99
Electronics 26-27 0.38 0.56 0.06 1.00
Industrial machinery 28 0.38 0.54 0.07 0.99
Motor vehicles 29 0.32 0.58 0.08 0.99
Other transport equipment 30 0.35 0.57 0.05 0.97

Note. These are the results of the production function estimation, assuming a Cobb-Douglas production technology, and
including the (lagged) log change in industrial robots in the productivity process. The industries are classified according to
ISIC Rev. 4. Returns to scale RTS. Sources: Amadeus, IFR, OECD Stan, Eurostat SBS, own calculations.

39



Table A.2: Heterogeneous effects of other technology and innovation measures.

45 ln(TFP) 45 ln(Markup)

(1) (2) (3) (4)

45 ln(Robots) x Quin1 -0.0025 -0.0011 -0.0272** -0.0280***
(0.004) (0.004) (0.010) (0.010)

x Quin2 0.0041 0.0051 -0.0317*** -0.0316***
(0.004) (0.004) (0.010) (0.010)

x Quin3 0.0054 0.0058 -0.0219** -0.0218**
(0.005) (0.005) (0.010) (0.010)

x Quin4 0.0073 0.0069 -0.0228** -0.0228**
(0.005) (0.005) (0.009) (0.009)

x Quin5 0.0183** 0.0157** 0.0147* 0.0154*
(0.008) (0.007) (0.008) (0.009)

45 ln(ICT) x Quin1 -0.0044 0.0132**
(0.005) (0.006)

x Quin2 -0.0042 0.0078
(0.004) (0.006)

x Quin3 -0.0014 0.0059
(0.004) (0.007)

x Quin4 0.0026 0.0105
(0.004) (0.007)

x Quin5 0.0121 -0.0031
(0.008) (0.008)

45 ln(R&D) x Quin1 -0.0007 0.0067
(0.007) (0.015)

x Quin2 -0.0075 0.0161
(0.007) (0.018)

x Quin3 -0.0138* 0.0147
(0.007) (0.016)

x Quin4 -0.0236*** 0.0175
(0.007) (0.017)

x Quin5 -0.0487*** 0.0168
(0.011) (0.019)

45 ln(Software) x Quin1 -0.0032 0.0133
(0.008) (0.013)

x Quin2 -0.0089 0.0080
(0.008) (0.011)

x Quin3 -0.0098 0.0075
(0.007) (0.013)

x Quin4 -0.0132** 0.0155*
(0.006) (0.009)

x Quin5 -0.0279*** -0.0069
(0.008) (0.012)

Country, year dummies X X X X
45 other technologies X X
45 other industry changes X X X X
Industry controls in t− 5 X X X X
Dummies for quintiles X X X X

Note. Based on 110,710 firm observations. Columns (1) and (3) replicate the results from column (5) of Table 2 and Table
3 respectively. In the columns (2) and (4), we check the robustness of the estimated heterogeneous effects of robots by
additionally allowing for heterogeneous effects of the other technology and innovation variables. The log changes in ICT,
R&D, and software and databases are interacted with the dummy variables for the quintiles of baseline TFP respectively
markups (i.e., Quin1 to Quin5). The regression equations are estimated by OLS using overlapping five-year differences. See
Table 2 for a detailed description of control variables. Standard errors clustered by country x industry in parentheses. Levels
of significance: *** 1%, ** 5%, * 10%. Sources: Amadeus, IFR, OECD Stan, Eurostat SBS, EU KLEMS, Comtrade, own
calculations.
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Table A.3: Estimated production function coefficients. Using the robot density instead of the log
robot stock.

Production function coefficients

Industry Code Labor Materials Capital RTS

Food products, beverages, tobacco 10-12 0.24 0.67 0.10 1.01
Textiles, leather, wearing apparel 13-15 0.41 0.49 0.06 0.96
Wood and wood products 16 0.33 0.60 0.08 1.00
Paper and paper products 17-18 0.41 0.51 0.07 0.99
Other chemical products 19-20 0.29 0.62 0.10 1.01
Pharmaceuticals, cosmetics 21 0.39 0.57 0.03 0.99
Rubber and plastic products 22 0.24 0.65 0.07 0.97
Other non-metallic mineral products 23 0.35 0.56 0.10 1.02
Basic metals 24 0.33 0.62 0.05 1.00
Fabricated metals 25 0.42 0.46 0.10 0.98
Electronics 26-27 0.38 0.56 0.06 1.00
Industrial machinery 28 0.38 0.54 0.07 0.99
Motor vehicles 29 0.32 0.58 0.09 0.99
Other transport equipment 30 0.34 0.58 0.04 0.97

Note. These are the results of the production function estimation, assuming a Cobb-Douglas production technology, and
including the (lagged) change in the robot density in the productivity process. The industries are classified according to ISIC
Rev. 4. Returns to scale RTS. Sources: Amadeus, IFR, OECD Stan, Eurostat SBS, own calculations.
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Table A.4: Estimated production function coefficients. Translog production technology.

Production function coefficients

Industry Code Labor Materials Capital RTS N

Food products, beverages, tobacco 10-12 0.24 ( 0.16 ) 0.67 ( 0.18 ) 0.10 ( 0.05 ) 1.01 101,270
Textiles, leather, wearing apparel 13-15 0.30 ( 0.14 ) 0.61 ( 0.22 ) 0.06 ( 0.04 ) 0.97 64,519
Wood and wood products 16 0.32 ( 0.16 ) 0.62 ( 0.17 ) 0.07 ( 0.02 ) 1.01 28,277
Paper and paper products 17-18 0.40 ( 0.17 ) 0.51 ( 0.18 ) 0.07 ( 0.03 ) 0.98 48,151
Other chemical products 19-20 0.32 ( 0.16 ) 0.61 ( 0.18 ) 0.09 ( 0.05 ) 1.02 37,468
Pharmaceuticals, cosmetics 21 0.35 ( 0.15 ) 0.59 ( 0.16 ) 0.05 ( 0.04 ) 1.00 7,311
Rubber and plastic products 22 0.30 ( 0.13 ) 0.60 ( 0.15 ) 0.08 ( 0.01 ) 0.99 45,956
Other non-metallic mineral products 23 0.33 ( 0.14 ) 0.60 ( 0.17 ) 0.09 ( 0.05 ) 1.02 40,235
Basic metals 24 0.33 ( 0.17 ) 0.62 ( 0.17 ) 0.05 ( 0.01 ) 1.00 20,934
Fabricated metals 25 0.44 ( 0.14 ) 0.46 ( 0.17 ) 0.09 ( 0.03 ) 0.99 147,458
Electronics 26-27 0.36 ( 0.17 ) 0.58 ( 0.18 ) 0.06 ( 0.03 ) 1.00 58,578
Industrial machinery 28 0.32 ( 0.16 ) 0.63 ( 0.16 ) 0.06 ( 0.02 ) 1.00 91,136
Motor vehicles 29 0.32 ( 0.14 ) 0.60 ( 0.17 ) 0.09 ( 0.05 ) 1.00 17,517
Other transport equipment 30 0.36 ( 0.21 ) 0.56 ( 0.21 ) 0.07 ( 0.03 ) 0.99 9,063

Note. These are the results of the production function estimation, assuming a translog production technology, and including the (lagged) log change in industrial robots in the
productivity process. The production function coefficients represent averages over all firms in an industry, the corresponding standard deviations are given in parentheses. The
industries are classified according to ISIC Rev. 4. Returns to scale RTS. Number of observations N . Sources: Amadeus, IFR, OECD Stan, Eurostat SBS, own calculations.
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Table A.5: First stage results.

4 ln(TFP) 4 ln(Markup)

IV, set A IV, set B IV, set A IV, set B

(1) (2) (3) (4)

[A] F-Test on excluded instruments

4 ln(Robots) x Quin1 8.649 17.875 9.219 22.399
x Quin2 8.652 14.428 9.103 28.069
x Quin3 8.519 16.568 7.910 19.138
x Quin4 8.198 15.038 8.496 18.284
x Quin5 8.174 14.318 9.831 15.218

[B] Kleibergen-Paap weak identification test

12.439 9.429 14.041 10.448

[C] Baseline specification

C.1 F-Test on excluded instruments

4 ln(Robots) 33.699 24.145 33.697 24.145

C.2 Kleibergen-Paap weak identification test

58.914 37.611 58.910 37.610

Note. Based on the IV estimations in the columns (7) and (8) of Table 4, this table presents the corresponding first stage
results. Panel A shows the F-Statistics on the excluded instruments. Since there are five potentially endogenous variables,
we estimate five first stage regressions for each model, and hence obtain the same number of F-Statistics. Panel B shows the
Kleibergen-Paap rk Wald F-statistics in order to test for weak identification. In Panel C, we present the same test statistics
for the baseline specification, i.e., for the model without allowing for heterogeneous effects of robots. Levels of significance:
*** 1%, ** 5%, * 10%. Sources: Amadeus, IFR, OECD Stan, Eurostat SBS, EU KLEMS, Comtrade, own calculations.
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Table A.6: Robustness checks for the effect on sales.

Density Ind. dummies Not lagged 44 43 IV, set A IV, set B

(1) (2) (3) (4) (5) (6) (7)

4 Robots x Quin1 -0.0034* -0.0625*** -0.0478*** -0.0666*** -0.0702*** -0.0171 -0.0358
(0.002) (0.018) (0.016) (0.015) (0.011) (0.028) (0.025)

x Quin2 0.0013 -0.0162 0.0026 -0.0110 -0.0137 0.0293 0.0117
(0.002) (0.012) (0.016) (0.015) (0.013) (0.026) (0.023)

x Quin3 0.0042* 0.0016 0.0210 0.0043 -0.0025 0.0500** 0.0342
(0.002) (0.013) (0.021) (0.020) (0.017) (0.025) (0.024)

x Quin4 0.0056** 0.0214 0.0347* 0.0214 0.0117 0.0587** 0.0452*
(0.002) (0.013) (0.021) (0.019) (0.018) (0.025) (0.023)

x Quin5 0.0061** 0.0215 0.0319 0.0217 0.0129 0.0527* 0.0428
(0.003) (0.017) (0.022) (0.023) (0.019) (0.030) (0.027)

N 110,727 110,710 114,140 171,570 228,313 110,710 110,710

Note. Based on N firm observations. This table presents robustness checks for the heterogeneous effects of robots on sales, based on the specification in column (5) of Table
5. The regression equations are estimated by OLS using overlapping differences. Column (1) uses the change in the robot density – the change in robots per thousand workers
– instead of the log change in robots as the main variable of interest. In column (2), we add industry dummies to control for industry trends. Columns (3)–(5) check the
robustness of the results with regard to timing issues, by not lagging the log change in robots (column 3), and by using four-year (column 4) and three-year (column 5) instead of
five-year differences. Columns (6) and (7) present IV estimations where over-identified models are estimated using 2SLS. The industry-level robot stock in the sample countries
is instrumented with robot installations in the US and the UK (set A), or in the US, the UK, Norway, Belgium, Portugal, and Austria (set B). Standard errors clustered by
country x industry in parentheses. Levels of significance: *** 1%, ** 5%, * 10%. Sources: Amadeus, IFR, OECD Stan, Eurostat SBS, EU KLEMS, Comtrade, own calculations.
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Table A.7: First stage results for the effect on sales.

IV, set A IV, set B

(1) (2)

[A] F-Test on excluded instruments

4 ln(Robots) x Quin1 10.517 17.801
x Quin2 9.910 23.149
x Quin3 9.567 13.967
x Quin4 11.819 23.920
x Quin5 10.698 18.015

[B] Kleibergen-Paap weak identification test

13.181 11.241

[C] Baseline specification

C.1 F-Test on excluded instruments

4 ln(Robots) 33.699 24.145

C.2 Kleibergen-Paap weak identification test

58.914 37.611

Note. Based on the IV estimations in the columns (6) and (7) of Table A.6, this table presents the corresponding first stage
results. Panel A shows the F-Statistics on the excluded instruments. Since there are five potentially endogenous variables,
we estimate five first stage regressions for each model, and hence obtain the same number of F-Statistics. Panel B shows the
Kleibergen-Paap rk Wald F-statistics in order to test for weak identification. In Panel C, we present the same test statistics
for the baseline specification, i.e., for the model without allowing for heterogeneous effects of robots. Levels of significance:
*** 1%, ** 5%, * 10%. Sources: Amadeus, IFR, OECD Stan, Eurostat SBS, EU KLEMS, Comtrade, own calculations.

Table A.8: First stage results for the effect on the labor share.

Unweighted Weighted by firm sales

(1) (2) (3) (4)
IV, set A IV, set B IV, set A IV, set B

F-Statistic on excluded instruments 53.404 20.312 51.014 20.307
Kleibergen-Paap rk Wald F-statistic 104.093 39.585 100.588 38.802

Note. Based on the IV estimations in Panel B of Table 6, this table presents the corresponding first stage results. We
show the F-Statistics on the excluded instruments and the Kleibergen-Paap rk Wald F-statistics in order to test for weak
identification. Levels of significance: *** 1%, ** 5%, * 10%. Sources: Amadeus, IFR, OECD Stan, Eurostat SBS, EU
KLEMS, Comtrade, own calculations.
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