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Abstract 

The EU’s Commonly Agreed Methodology (EUCAM) is used by the European Commission to estimate 
potential output and the output gap in order to appraise the productive capacity and the cyclical position 
of the EU economies. This paper assesses the robustness of the decomposition between trend and cyclical 
total factor productivity, two quantities involved in EUCAM which are notoriously difficult to disentangle in 
real-time. In 2010 EUCAM was extended to incorporate additional information about capacity utilisation in 
this detrending. The robustness of the trend-cycle decomposition of total factor productivity is assessed 
with respect to variations in the prior distribution of model parameters, in the set of indicators used to 
proxy capacity utilisation, and in the assumption of cyclical symmetry. The analysis shows that EUCAM is 
reasonably robust to the departures in model assumptions examined. 
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1 INTRODUCTION

Potential output and the output gap provide essential tools to gauge the cyclical position of the
economy and its productive capacity. In the frame of the economic and fiscal policy of the EU, the
output gap enables the calculation of the structural budget balances of the Member States while
potential output helps assessing the sustainability of public debts. Potential output is also relevant
for evaluating the effectiveness of structural reforms aimed at boosting the productive capacity
of EU countries. The European Commission estimates these two quantities by applying the EU′s
Commonly Agreed Methodology (EUCAM) discussed at the Economic Policy Committee′s Output
Gap Working Group and endorsed by the Ecofin Council (see Havik et al., 2014). As it relies on
the Cobb-Douglas production function, EUCAM involves the estimation of trend and cyclical Total
Factor Productivity (TFP), two quantities which are notoriously difficult to disentangle in real-time
(see e.g. Kahn and Rich, 2007). In 2010, the previously used Hodrick-Prescott filter was replaced
with a Bayesian model which exploits the link between the TFP cycle and capacity utilisation.
This paper assesses the robustness of this upgraded TFP decomposition. The methodology is
challenged with respect to variations in the prior distribution of model parameters, in the set of
survey indicators used to proxy capacity utilisation, and in the assumption of cyclical symmetry.
To assess robustness, the focus is put on the smoothness of potential growth, on the amount of
commonality between the TFP cycle and capacity utilisation, and on the stability of the estimates
across vintages. Special attention is paid to the variation recorded with respect to the EUCAM
estimates.

Whenever possible, EUCAM makes use of economic knowledge so prior distributions are generally
informative. For instance, the study of business cycles has led to the broad consensus that
expansions typically last about eight years. Trend smoothness is also a strong requirement,
motivated by the perception that permanent changes take place at a slower pace than transitory
ones. Not all parameters can however benefit from such insights. Because prior distributions
carry some degree of subjectivity, it is important to assess their impact on the estimation results.
Traditional methods to analyse sensitivity to priors include the informal approach, the local and
the global sensitivity analysis (Berger, Rios Insua, and Ruggeri, 2000). Local sensitivity analysis
monitors the change in posterior estimates that follows from local perturbations in the baseline
prior, with the advantage that the most influential parameters are easily identified. In the EUCAM
context, it points out the importance of the prior distribution for the magnitude of the shocks to
potential TFP growth. Emphasis is indeed put on small values, which is justified by the need to
obtain potential growth estimates that respect the smoothness requirement in presence of noisy
data. For the other parameters, the EUCAM priors do not appear very informative compared to
the data: local variations in prior means are found to hardly affect the trend-cycle decomposition,
even when compounded effects are taken into account. Local perturbations being arbitrary small,
the local sensitivity analysis has however the drawback that any evidence of robustness remains
questionable. It is thus worth completing it with an informal approach where more extreme
departures from the baseline prior are examined. Following the suggestion of Ademmer et al.
(2017), we focus on the model for capacity utilisation. We find that the TFP decomposition is
generally robust to the prior for the parameters of the capacity utilisation equation.

Carstensen, Kiebner, and Rossian (2023) argue that incorporating further business cycle indica-
tors could be advantageous. We thus experiment with the set of 12 domestic survey indicators
utilised by Carstensen et al. (2023), which includes new orders in intermediate and production
goods sectors, book orders, production expectations, the level of confidence in the main sectors
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plus the economic sentiment indicator. Not all these indicators measure capacity utilisation in a
strict sense: new orders, book orders, and production expectations for instance may be expected
either to anticipate the degree of commitment of resources rather than to describe its current
level, or to be better related to the change in capacity utilisation. Similarly to Carstensen et
al. (2023), the indicators are handled in one- and two-step procedures: the two-step approach
replaces the EUCAM indicator of capacity utilisation with the first principal component of a subset
of indicators, while the one-step approach adds all the 12 indicators at the cost of a modification
of the original model. Variations in the TFP trend-cycle decomposition exceeding 1 pp. with
both the one- and two-step approaches occur in seven countries. Note that a certain degree
of sensitivity to the indicators must be deemed acceptable. Aggregating the indicators into a
principal component yields a decomposition which is always closer to EUCAM compared to using
all indicators in a disaggregated way, most probably because aggregating enables maintaining
the original specification. Finally, no stabilisation effect appears: the revisions remain roughly
equal across methods.

A prevailing view in the business cycle literature is that the economic cycle evolves following
asymmetric patterns. Tests of skewness and coskewness indeed confirm the presence of asym-
metry in TFP and capacity utilisation series from a majority of Member States. We thus compare
EUCAM to alternative models for the TFP cycle which take asymmetry into account. We focus
on the Kim and Nelson (1999) econometric implementation of the Friedman’s (1993) plucking
model. The original formulation however foresees a negative mean for the TFP cycle, which con-
trasts with EUCAM where the TFP cycle is centred on zero. We thus adapt the Kim and Nelson
model to produce a zero-mean TFP cycle in spite of the alternating regimes. Given the outcome
of the skewness and coskewness tests, a further model is tested where asymmetry lies both
in the cyclical shocks and in the idiosyncratic shocks of capacity utilisation series. The analysis
shows that extending EUCAM to account for asymmetries has only a moderate impact on the TFP
decomposition.

Overall, the three exercises suggest that the TFP decomposition in EUCAM is reasonably robust to
the departures in model assumptions examined. Three regularities appear: focusing on vintage
Autumn 2022, (i) the estimation results are more stable in the 14 ’old’ Member States (EU14)
compared to the post-2004 Accession Countries, (ii) for each country the potential growth es-
timates show more firmness than trend-cycle ones; across vintages, (iii) the changes in model
assumptions explored do not lead to improvements in the stability of trend-cycle estimates. Reg-
ularity (i) can be expected to dissipate in the future with the incoming of additional observations.
Regularity (ii) suggests that potential growth is better captured than the output gap, which is
probably due to its larger persistence. Regularity (iii) is consistent with the possibility that the
revisions in trend-cycle estimates are mostly due to the corrections in TFP data.

Section 2 describes the EUCAM model to detrend TFP. Section 3 investigates the sensitivity to
prior distributions. Section 4 considers extending the set of indicators to proxy capacity utilisation.
Section 5 discusses asymmetry in the TFP cycle. Section 6 concludes.

2 THE TFP MODEL IN EUCAM

In EUCAM, TFP is calculated using a Cobb-Douglas production function with constant return to
scale and output elasticity to labour equal to 0.65. It is then assumed that the Solow residual
sr = logTFP is made up of a trend pt plus a cycle ct which is related to the degree of capacity
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utilisation cu as in:

srt = pt + ct

cut = µcu + βcuct + ecut (1)

where ecut is an unobserved stochastic element. The link between capacity utilisation and the TFP
cycle arises from an enriched formulation of the production function where capacity utilisation
modulates the intensity of commitment of the input factors (Planas, Roeger, and Rossi, 2007).
Trend TFP depends instead on the efficiency of the exploitation of the input factors implied by
the level of technology and is thus unobserved. The trend and cycle components of TFP, and the
idiosyncratic portion ecut of capacity utilisation, evolve according to independent stochastic linear
processes such as:

∆pt = µp + ηt−1

ηt = ϕηηt−1 + aηt

ct = 2 Acos(2π/τ)ct−1 −A2ct−2 + act

ecut = ϕcuet−1 + acut (2)

where ∆ denotes first-difference, and aℓt, ℓ = η, c, cu, are normally-distributed white noises with
variance Vℓ. The use of stochastic models is consistent with the view that the TFP trend and
cycle are inherently unstable. The cyclical fluctuations of ct are described in terms of amplitude
A and periodicity τ . A first-order autoregressive process is considered for ecut in the case of
FI, FR, and SI; for the other countries a simple white noise process is used, i.e. ϕcu = 0 and
ecut = acut. Model (1)-(2) is fitted to the Solow residual augmented with two preliminary forecasts
and to an indicator of capacity utilisation built upon survey information in industry, services, and
construction sectors provided by the European Commission’s Business and Consumer Survey
(Havik et al., 2014). The estimation period starts in 1980 for EU14 and 1995 for the post-2004
Accession Countries, but few observations for the capacity utilisation indicator are missing in the
first years.

3 SENSITIVITY TO PRIOR DISTRIBUTIONS

Model parameters and unobserved components are estimated in the Bayesian framework (Planas
and Rossi, 2020). This requires eliciting a prior distribution for the model parameters, with
the advantage that information provided by economic theory and empirical studies can eas-
ily be incorporated. Let the p × 1 vector θ gather all parameters of model (1)-(2), i.e. θ =

(A, τ, Vc, µp, ϕη, Vη, µcu, βcu, ϕcu, Vcu) with maximum dimension p = 10. All parameters are assumed
independent a priori, except µcu, βcu, and Vcu which are given a Normal-Inverted Gamma-2 (NIG2)

structure (Bauwens, Lubrano, and Richard, 1999, p. 302). For each parameter, the prior distri-
bution in current use is shown in Table 3.1 together with the median value of the prior means
and standard deviations across EU27 countries. The priors are summarised in terms of median
because of a strong heterogeneity across countries of the prior distribution of variance parame-
ters.

Given the set of observations y = (y1, · · · , yT ) where yt = (srt, cut), t = 1, · · · , T , and the prior
distribution π(θ|h0) indexed by the vector of hyper-parameters h0, Bayesian estimates of the
cycle and potential growth are obtained as the posterior means E(ct|y, h0) and E(∆pt|y, h0).
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Table 3.1 Local sensitivity analysis - Median values across EU27

Prior distribution σ2
po/σ

2
pr Average derivative || D·ℓ

T ||
Shape µpr σpr Cycle Pot. growth

Vη IG2 7.5× 10−6 7.5× 10−6 4.85 618.2 251.9

Vc IG2 1.0× 10−3 1.0× 10−3 0.01 4.29 1.75

Vcu NIG2 3.5× 10−3 3.5× 10−3 0.01 0.81 0.32

µcu NIG2 2.5× 10−4 3.1× 10−2 0.10 0.08 5.7× 10−3

µp N 1.5× 10−2 1.0× 10−2 0.17 1.7× 10−2 7.3× 10−3

A B[0,.99] 0.42 0.17 0.45 1.0× 10−2 4.3× 10−3

βcu NIG2 1.40 0.71 0.20 2.4× 10−3 1.0× 10−3

ϕη N[0,.99] 0.80 0.24 0.14 1.8× 10−3 0.9× 10−3

ϕcu N[−.97,.97] 0.0 0.40 0.17 1.8× 10−3 3.8× 10−4

τ B[2,ub] 8.0 3.2 0.72 1.0× 10−3 3.4× 10−4

Notes: µpr and σpr refer to the prior mean and standard deviation; σ2
po/σ

2
pr gives the posterior to prior variance ratio;

subscript intervals like [0, .99] refer to a truncation; for the periodicity parameter τ , the upper bound of the truncation

interval [2, ub] depends on the country, namely ub = 32 for EU14 and ub = 17 for post-2004 Accession Countries.

These posterior means are calculated by averaging the expected value of ct and ∆pt given y and θ

over the parameter posterior distribution π(θ|y, h0) such that π(θ|y, h0) ∝ π(y|θ)π(θ|h0), π(y|θ) being
the likelihood function, as in E(ct|y, h0) =

∫
E(ct|y, θ)π(θ|y, h0)dθ.

3.1. LOCAL SENSITIVITY ANALYSIS

How the unobserved components posterior mean varies following local departures in the prior
mean of model parameters E(θ|h0) can be understood through the first-order approximation:

E(ct|y, h) ≃ E(ct|y, h0) +

p∑
ℓ=1

(
E(θℓ|h)− E(θℓ|h0)

)dE(ct|y, h)
dE(θℓ|h)

|h=h0

where h represent the perturbed vector of hyper-parameters. Millar (2004) shows that the deriva-
tive of E(ct|y, h) respectively to the prior mean E(θℓ|h) is equal to the covariance between the
expected value E(ct|y, θ) and the derivative of the logarithm of the prior distribution π(θℓ|h) with
respect to the prior mean E(θℓ|h). The first-order approximation can thus be written as:

E(ct|y, h) ≃ E(ct|y, h0)

+

p∑
ℓ=1

(
E(θℓ|h)− E(θℓ|h0)

)
Cov

(
E(ct|y, θ),

d logπ(θℓ|h)
dE(θℓ|h)

|h = h0

)
(3)

For each parameter, the first-derivative of the logarithm of the current prior distribution with
respect to the prior mean, i.e. d logπ(θℓ|h)/dE(θℓ|h), is given in Appendix. Equation (3) thus

9



provides a simple method to evaluate the sensitivity of the EUCAM estimates in a given time-
period to small departures in prior means.

Our interest mostly focuses on the estimates for all time-periods. Let v denote the p × 1 vector
of deviations in prior means with typical element vℓ = E(θℓ|h) − E(θℓ|h0), and D the T × p matrix
of derivatives with typical element Dtℓ = Cov

(
E(ct|y, θ), d logπ(θℓ|h)/dE(θℓ|h)|h=h0

)
. The first-order

approximation (3) applied to the T × 1 vector of cycle variables c = (c1, · · · , cT )′ can be written as:

E(c|y, h) ≃ E(c|y, h0) +Dv (4)

A first question of interest is which parameter is most influential. If only the prior mean of
parameter ℓ is changed by vℓ in a one-at-a-time (OAT) sensitivity analysis, then the deviation
from the initial vector of cycle estimates is given by:

|| E(c|y, h)− E(c|y, h0) || = || vℓD·ℓ ||=| vℓ | || D·ℓ ||

where D·ℓ represents the ℓ-th column of D and || D·ℓ || its L2-norm. The larger the derivative norm
|| D·ℓ || and the larger the impact of a deviation vℓ from the prior mean. The norm of the vector
of derivatives thus gives an indication about the relative importance of each parameter.

Table 3.1 shows the results for the EUCAM prior distributions in median value across EU27 coun-
tries. The derivative norm is displayed in average over the T time-periods. The parameters are
sorted in decreasing order of importance with respect to cycle estimation. Median values are
reported instead of averages due to the occurrence of outliers in the derivatives, especially for
variance parameters. Table 3.1 also reports the ratio of the posterior to prior variance σ2

po/σ
2
pr for

each parameter, still in median value. This ratio is advocated by Muller (2012) as a summary of
the amount of data information relatively to the prior information. For instance, a ratio close to
zero indicates that the data are much more informative than the prior so the prior is not influ-
ential. On the opposite a ratio greater than 1 indicates that the prior restrains the parameter, in
which case a change in prior is likely to generate a change in the posterior mean.

With a median value of the posterior to prior variance ratio equal to 4.85, the prior distribution
of the variance of the shocks to potential growth Vη is strongly restrictive1. The need to get
potential growth estimates that respect the smoothness requirement justifies the elicitation of
a prior distribution for Vη that emphasises small values. For most countries, choosing a less
restrictive prior would lead to an excessively erratic trend estimate. For all other parameters,
the prior distribution appears to be of limited importance. In particular, given the prior on Vη, the
likelihood function pins well down the variance of the cyclical and idiosyncratic shocks. Among
the non-variance parameters, with a median value of the posterior to prior variance ratio equal
to 0.72, the most informative prior distribution regards the cycle periodicity τ for which use could
be made of the empirical knowledge about business cycles. The derivatives in Table 1 confirm
that for the trend-cycle decomposition, the most influential parameter is Vη: a change by one
prior standard deviation in the prior mean of Vη implies a median shift by 0.5 pp. in the estimates
of the cycle in each time-period - 100 × 7.5 10−6 × 681.2 = 0.51 pp. - and by 0.19 pp. for potential
growth. More stability is recorded for the other parameters.

This analysis considers variations in one prior mean at a time. Compounded effects take place
when all parameters are updated simultaneously, as in Basu, Jammalamdaka, and Liu (1996).

1There are few exceptions however, namely AT, CY, CZ, HR, IT, and MT, where the ratio is less than one.
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In this case the deviation taken on average along the time dimension amounts to:

1√
T

|| E(c|y, h)− E(c|y, h0) || =

√
v′D′Dv

T

The vector of deviations v being arbitrary, we concentrate on the one that implies the maximum
discrepancy in posterior estimates. Following Muller (2012), we express the deviations in units
of prior standard deviations. Let Σp denote the p× p matrix of prior variances, or marginal prior
variance in the case of NIG2 distributions. Some prior standard deviations may be excessively
large for a local analysis in multidimensions, so we introduce a re-scaling with the p× 1 vector of
weights w. In the univariate case, the deviation vℓ can be expressed in units of the re-scaled prior
standard deviation as in vℓ = uℓ×wℓσprℓ for some uℓ with uℓ = ±1 so that the deviation can assume
positive or negative directions. This implies that (vℓ

/
wℓσprℓ)

2 = 1. The multivariate analogue for a
p × 1 vector v of deviations is v′(W ′ΣpW )−1v = 1 where W is a diagonal matrix with the rescaling
weights w of its diagonal. For a given set of weights, we seek the vector v that solves:

max || E(c|y, h)− E(c|y, h0) ||2 = max
v: v′(WΣpW ′)−1v=1

v′D′Dv

The problem is equivalent to finding u = (WΣpW
′)−1/2v such as:

u = argmax
u:u′u=1

u′(WΣpW
′)1/2D′D(WΣpW

′)1/2u

Let λ1 denotes the largest eigenvalue of (WΣpW
′)1/2D′D(WΣpW

′)1/2. In terms of the L2-norm, the
maximum deviation achieved amounts to:

max || E(c|y, h)− E(c|y, h0) || =
√

λ1

Dividing by
√
T provides the maximum discrepancy on average for each time-period. Graph

3.1 and 3.2 show the maximum discrepancy
√
λ1/T in cycle and potential growth estimates for

the EU27 countries (in pp.). Given the importance of the prior distribution of Vη highlighted in
the OAT analysis, the prior for Vη is left unchanged so the results are conditional on this prior
distribution. For the other parameters, changes in prior mean are allowed by up to one-fourth
of the prior standard deviation for the variance parameters, and by up to one-half of the prior
standard deviation for the remaining ones.

In Graph 3.1, the deviations in cycle estimates are smaller than one-half pp. in 24 cases. The
largest discrepancies lie in the interval 0.5-0.67 pp.; they are recorded for CZ, EL, and RO. As
expected, potential growth is more stable than the cycle estimates: the variations displayed
in Graph 3.2 are smaller than one-quarter pp. in 26 cases. The maximum, one-third pp., is
recorded for RO. In general, more instability is detected for the post-2004 Accession Countries:
prior assumptions are more important because the sample size in this group of countries is
reduced by 15 years compared to EU14.
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Graph 3.1 Maximum discrepancy in cycle
estimates (pp.)
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Graph 3.2 Maximum discrepancy in po-
tential growth estimates (pp.)
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Notes: the maximum variation
√

λ1/T that can be recorded in each time-period is shown for deviations from prior means

by up to 1/4 of the prior standard deviation in the case of variance parameters and by up to 1/2 of the prior standard

deviation for the non-variance parameters; the analysis is conditional on the existing prior for Vη.

The evidence of robustness shown in Graph 3.1-3.2 may be seen as questionable since the change
in prior means is arbitrary small, even though it is multidimensional. Larger prior variations
give rise to larger discrepancies but the first-order approximation (4) looses accuracy. If local
sensitivity analysis offers insights about the relative importance of prior and data information
for each parameter and about the most influential priors, it inherits the limitations of the Taylor
approximation. It is thus worth complementing it with the exploration of larger variations in prior
distributions.

3.2. MORE EXTREME DEPARTURES IN PRIOR DISTRIBUTIONS

In their review of EUCAM, Ademmer et al. (2017) reported evidence of sensitivity of the TFP
decomposition to the prior distribution of the parameters of the capacity utilisation equation in
the case of IT. Referring to these priors, Ademmer et al. (2017) argued that “it is important
to check their impact on the estimation results thoroughly”. We address this concern using an
informal approach (Berger, Rios Insua, and Ruggeri, 2000) where the importance of the prior of
the parameters in the capacity utilisation equation (1) is assessed by comparison against using
the flat alternative:

5(µcu + 0.1) = B(1.1, 1.1)

βcu/5 = B(1.1, 1.1)

Vcu/V
max
cu = B(1.1, 1.1) (5)

where B(1.1, 1.1) denotes the Beta distribution with hyperparameters set equal to 1.1, which is
almost uniform. The re-scaling of the variables in the left-hand-side of (5) imposes µcu ∈ [−0.1, 0.1],
β ∈ [0, 5], and Vcu ∈ [0, V max

cu ], where V max
cu is a given number, for instance the variance of capacity

utilisation in a previous vintage. The prior distribution of the other parameters is left unchanged.
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Flat priors constitute an extreme case in which no information is added on the side of the prior
so the shape of the likelihood function is left unaltered in the posterior distribution. They are
expected to highlight the salient features of the likelihood function, and thus to provide a simple
tool to explore the model properties. For instance, in the case of DE, ES, HU, and PT, the flat prior
(5) yields a very small posterior variance of the idiosyncratic component, leading to a correlation
between capacity utilisation and the Solow residual cycle which is close to 1. This implies that the
cycle is almost observed, so the resulting decomposition is invalid. Why the likelihood function
puts emphasis on small values of Vcu can be understood by checking the dynamic properties of
the data autoregressive transformation ϕc(L)cut, where ϕc(L) is the autoregressive polynomial
that drives the cycle fluctuations in (2). Writing it as ϕc(L) = 1 − ϕc1L − ϕc2L

2 to simplify, the
autoregressive transformation ϕc(L)cut satisfies:

ϕc(L)cut = ϕc(1)µcu + βact + (1− ϕc1L− ϕc2L
2)acut

The capacity utilisation equation thus implies the following system of second moments:

γ0
(
ϕc(L)cut

)
= β2Vc + (1 + ϕ2

c1 + ϕ2
c2)Vcu

γ1
(
ϕc(L)cut

)
= ϕc1(−1 + ϕc2)Vcu < 0

γ2
(
ϕc(L)cut

)
= −ϕc2Vcu > 0 (6)

where γk
(
ϕc(L)cut

)
refers to the lag-k covariance of ϕc(L)cut. Given ϕc1, ϕc2, and Vc which are

determined by the TFP block of equations, the system (6) is over-identified as there are only two
parameters, β and Vcu, to describe three second moments. In addition, given the amplitude and
periodicity parameters A and τ , the autoregressive coefficients are such as ϕc1 = 2A cos(2π/τ) > 0

and −1 < ϕc2 = −A2 < 0, so first two autocovariances satisfy γ1(ϕc(L)cut) < 0 and γ2
(
ϕc(L)cut

)
> 0.

When the data reject these restrictions, the smaller the value of Vcu the smaller the mismatch
between the empirical and the model-based moments.

To make possible the use of flat priors also in the case of DE, ES, HU, and PT, the over-identifying
restriction is relaxed by introducing a MA(1) term in the process describing the idiosyncratic
component as in:

ecut = acut + θcuacut−1 (7)

The variance of the idiosyncratic component becomes V (ecut) = Vcu(1 + θ2cu). Given the flat prior
θcu ∼ B(1.1, 1.1)× I(−1,1), the system of equations (1)-(2)-(7) is estimated using the flat priors (5)

for (µcu, β, Vcu). Hence the prior sensitivity analysis is conducted comparing the current results
against the use of flat priors in the original

Empirical evidence is reported for 25 countries, namely EU27minus BG and HR as EUCAM does not
employ capacity utilisation data for these countries. Based on the Autumn 2022 vintage, Graph
3.3 shows the variance of the idiosyncratic component of capacity utilisation estimated with the
flat prior in units of the EUCAM estimate. The ratio is calculated using the posterior modes. For
19 countries out of the 25 considered, the use of a flat prior leads to a smaller posterior variance
of the idiosyncratic component. The current prior has thus a tendency to inflate the magnitude
of the idiosyncratic component of capacity utilisation.
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Graph 3.3 Idiosyncratic component vari-
ance under flat priors in units of the cur-
rent estimate
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Graph 3.4 Model-based correlation be-
tween capacity utilisation and the Solow
residual cycle

Current prior vs flat prior
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A increased magnitude of the idiosyncratic component can be expected to reduce the amount of
commonality between capacity utilisation and the Solow residual cycle, especially if the poste-
rior distribution of βcu is stable. This is confirmed by Graph 3.4 which shows the model-based
correlation, still calculated using the parameters posterior mode: it is seen that the correlation
increases with the flat prior in all countries excepted IE, LU, MT, PL, and SI.

To summarise the impact of the flat prior on the trend smoothness, Graph 3.5 shows the inverse
signal to noise ratio Vc/Vη, calculated using the posterior mode of each variance parameter, in
units of the estimate obtained with the current prior. Values above one indicate that the flat
prior increases the ratio Vc/Vη and thus yields a smoother trend. Most often the smoothest trend
is obtained with the current prior. One possible explanation is that with the current prior, the
variance of the cyclical shocks Vc increases together with the variance of the idiosyncratic term in
order to hold steady the signal to noise ratio of the capacity utilisation equation, i.e. Vc/Vcu. This
eventually leads to an increase in Vc/Vη and thus to potential growth estimates that are smoother.
In such cases the current prior on Vcu contributes to the trend smoothness together with the prior
on Vη.
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Graph 3.5 Inverse signal to noise ratio
Vc/Vη, in units of the current estimate
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Graph 3.6 Maximum absolute difference
between cycle estimates in the years
2000-2022
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Graph 3.6 shows the maximum absolute variation in cycle estimates for the period 2000-2022
implied by the use of a flat prior for the parameter of the capacity utilisation equation. Only in
the case of EL and HU a variation larger than 1.0 pp. is recorded. Potential growth is more stable
than cycle estimates: the variations displayed in Graph 3.7 exceed 1 pp. only in the case of IE.
As already noticed in the local analysis, the post-2004 Accession Countries show slightly more
sensitivity to priors.

Graph 3.7 Maximum absolute difference
between potential growth estimates in
the years 2000-2022

at be de dk el es fi fr ie it lu nl pt se
0   

0.25

0.5 

1   

cy cz ee hu lt lv mt pl ro si sk
0   

0.25

0.5 

1   

3.3. CONCLUSION

EUCAM relies on a prior distribution for the magnitude of the shocks to potential TFP which puts
emphasis on small values. This is justified by the need to obtain potential growth estimates that
respect the smoothness requirement in presence of noisy data. For the other parameters, the
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EUCAM priors do not appear very informative compared to the data: local variations in prior
means hardly affect the trend-cycle decomposition, even when compounded effects are taken
into account. The exploration of a more extreme alternative like a flat prior for the parameters of
the capacity utilisation equation reveals that trend smoothness is favoured at the cost of a slight
reduction in commonality between capacity utilisation and the Solow residual cycle. Nevertheless,
the trend-cycle decomposition of the Solow residual appears to be generally robust to the prior
of the capacity utilisation equation parameters. Slightly more instability is observed for the post-
2004 Accession Countries compared to the EU14 group due to a smaller sample size. EL, IE, and
HU are countries where more sensitivity to priors could be detected.

4 ROBUSTNESS TO SURVEY INDICATORS

4.1. ALTERNATIVE INDICATORS

EUCAM takes into consideration the degree of capacity utilisation in the economy. To build the
measure of capacity utilisation called CUBS, EUCAM merges an indicator of resource utilisation in
industry (CU) together with two economic sentiment indicators that account for resource utilisa-
tion in service and construction sectors; details can be found in Annex 3 of Havik et al. (2014).
Since univariate methods are not considered, a certain degree of sensitivity to the indicators must
be deemed acceptable. Still, it is worth ascertaining that EUCAM delivers a TFP decomposition that
does not depend excessively on the set of indicators used to proxy capacity utilisation. For this
robustness check, we take as starting point Carstensen et al. (2023) who argue that augmenting
EUCAM with additional business cycle indicators can stabilise significantly the TFP decomposition
across vintages: they report a 25% reduction in revisions in the concurrent estimates on aver-
age across the five largest economies of the euro area. We thus check the robustness of the
TFP decomposition to the proxies used for capacity utilisation while also revisiting the empirical
evidence reported by Carstensen et al. (2023).

We focus on the 12 domestic survey indicators labelled SUR in Carstensen et al. (2023) which
are provided by the European Commission Business and Consumer Surveys: in addition to CU,
the SUR group includes new orders in total industry (NO), intermediate, and production goods
sectors, book orders (BO), production expectations (PE), and the level of confidence in industry,
services, consumers, retail, and construction sectors which are aggregated into the economic
sentiment indicator (ESI). Carstensen et al. (2023) also consider domestic hard and international
indicators but their results suggest the SUR group is the most relevant one to stabilise the TFP
gap estimates. Not all the SUR indicators measure capacity utilisation in a strict sense: new
orders, book orders, and production expectations for instance may be expected to anticipate the
degree of commitment of resources rather than to describe its current level. Nevertheless, and
although Carstensen et al. (2023) find it advantageous for forecasting, we do not experiment with
time-shifting the indicators. Instead the indicators are handled in one- and two-step procedures
similarly to Carstensen et al. (2023): the two-step approach replaces the CUBS indicator in (1)
with the first principal component of CU, NO, BO, PE, and the ESI, while the one-step approach
complements CUBS with all 12 indicators. In the one-step approach, model (1)-(2) is augmented
with the measurement equations:

indℓt = βℓct + eℓt + et ℓ = 1, · · · , 12 (8)

No constant term appears in (8) as the indicators are centered. Compared to (1), equation (8)
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contains two white noises: eℓt which is purely idiosyncratic, and et which captures the common
movements in the indicators which do not have cyclical recurrence. Omitting this common shock
leads to estimating a very small variance of the idiosyncratic shocks eℓt and thus to a cycle
estimate that sticks to the cross-section average of the indicators. This eventually produces
potential TFP estimates that are excessively erratic. In order to facilitate model comparison,
all survey indicators are re-scaled to the empirical variance of CUBS so that the current prior
distribution for βcu and Vcu can be used for βℓ, V (eℓt), ℓ = 1, · · · , 12, and V (et).

4.2. EMPIRICAL COMPARISON

Graph 4.1 shows the inverse signal to noise ratio Vc/Vη in units of the current estimates; val-
ues greater than one indicate further smoothness. Most often, the one-step approach leads to
estimating a more erratic potential TFP. Relying on the first principal component only delivers a
potential whose smoothness is more similar to EUCAM. This suggests that the differences between
the EUCAM and SUR decompositions are mainly due to the change in model specification.

Graph 4.1 Inverse signal to noise ratio, in
units of current estimates

Principal component, all survey indicators
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Notes: a ratio Vc/Vη larger than one in units of the current

estimate indicates further smoothness.

Graph 4.2 Model-based correlation be-
tween capacity utilisation indicators and
the Solow residual cycle

EUCAM, principal component, all survey
indicators
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Notes: for the one-step approach, the maximum corre-

lation across indicators is shown.

Graph 4.2 shows the model-based correlation between the TFP cycle and, respectively, CUBS, the
first principal component, and the SUR indicators. The correlation is calculated using the posterior
mode of the model parameters. In the SUR case where the correlation is indicator-dependent,
Graph 4.2 shows the maximum value across indicators2. It is seen that the one-step approach

2In the one-step approach, the correlation is maximised with ESI in seven cases, namely CZ, EE, ES, FI, IE, MT, SK,
with CUBS in six cases, namely EL, FR, HU, IT, PT, SE, with CU in five cases, namely BE, DE, DK, NL, PL, and with BO
in four cases, namely AT, CY, LU, SI. The sentiment index in industry, construction, and services, provides the largest
correlation with the TFP cycle only once in the case of LT, RO, and LV, respectively. NO, BO, and PE instead never appear
as most informative indicators.
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SUR always reduces commonality, most probably because of the additional noise variable et that
captures the non-cyclical dependence between indicators. Comparing the three approaches,
the amount of commonality between the auxiliary variables and the TFP cycle is maximised using
CUBS in 60% of the cases, namely nine out of EU14 and six out of the eleven post-2004 Accession
Countries.

Graph 4.3 and 4.4 show the maximum absolute discrepancy with respect to the EUCAM cycle
and potential growth estimates which is recorded when resorting to the new indicators. Accord-
ing to Graph 4.3, variations in trend-cycle decomposition exceeding 1 pp. with both the one-
and two-step approaches occur in seven cases, namely DK, EL, IE, LT, LU, RO, and SI. Potential
growth estimates in Graph 4.4 show more stability since variations exceeding 0.5 pp. with both
approaches are recorded in only four cases, namely DK, IE, RO, and SI. Most often, aggregat-
ing the indicators into a principal component yields a decomposition which is closer to EUCAM
compared to using all indicators. The change in model specification may thus play a role. For
instance, in the case of DK we could check that the variation in trend-cycle decomposition re-
duces to 1 pp. if PE and the three new-order series are related to the first-difference of the Solow
residual cycle instead of its level. Such a specification also yields a decomposition which differs
from EUCAM by 0.6 pp. only compared to 2.0 pp. with the plain one-step approach in the case of
NL. For ES and PL, the discrepancy reduces to less than 1.0 pp. when PE and the three new-order
series are excluded from the data set.

Graph 4.3 Maximum absolute distance to
the EUCAM TFP cycle estimates Vintage
Autumn 2022, period 2000-2022 (pp.)

Principal component, all survey indicators
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Graph 4.4 Maximum absolute distance to
EUCAM TFP potential growth estimates
Vintage Autumn 2022, period 2000-2022
(pp.)

Principal component, all survey indicators

at be de dk el es fi fr ie it lu nl pt se
0  

0.5

1  

cy cz ee hu lt lv mt pl ro si sk
0  

0.5

1  

Finally, we check whether the use of additional indicators helps stabilising the decomposition
across vintages. To make the exercise as realistic as possible, both real-time TFP data and real-
time prior distributions are utilised. The survey indicators are instead not revised. The stability
of the TFP decomposition across vintages 2013-2022 is measured by the root mean squared
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revision error (Rmsre) defined as:

Rmsre =

√√√√ 2022∑
ℓ=2014

(cℓκ+ℓ−2014 − cℓ−1
κ+ℓ−2014)/9 (9)

where the superscript ℓ refers to the vintage year, and the subscript κ to the concurrent time-
period in vintage 2013, i.e. the time-period corresponding to year 2013 in vintage 2013. The
difference cℓκ+ℓ−2014 − cℓ−1

κ+ℓ−2014, ℓ = 2014, · · · , 2022, measures the one-step revision in the cycle
estimate for time-period κ+ ℓ− 2014 due to the vintage update from ℓ− 1 to ℓ.

Graph 4.5 Rmsre in TFP cycle estimates,
vintages 2013-2022

EUCAM, principal component, all survey
indicators
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Graph 4.6 Rmsre in potential growth esti-
mates, vintages 2013-2022

EUCAM, principal component, all survey
indicators

at be de dk el es fi fr ie it lu nl pt se
0   

0.25

0.5 

cy cz ee hu lt lv mt pl ro si sk
0   

0.25

0.5 

Graph 4.5 shows the Rmsre in cycle estimates. Not much difference can be seen between the
three methods: on average across countries, the Rmsre in cycle estimates obtained with CUBS,
the two- and the one-step approach is equal to 0.88, 0.89, and 0.97 pp., respectively. These
values represent roughly 50% of the cross-country average standard error of the EUCAM cycle
estimates obtained in Autumn 2022. The only cases where a reduction in Rmsre greater than
20% is observed are CY and LU with principal component and FR, IT, and PT with all indicators.
There are also cases where the new indicators inflate instability, like for instance for DK and NL
where the increase in Rmsre exceeds 50%.

Graph 4.6 focuses on potential growth. In the case of IE, the abnormal size of the one-step
revision, almost 2 pp., is explained by a strong instability in the TFP vintages which follows from
the relocation of some intellectual property assets to this country by a small number of firms
which have perturbed the calculation of capital stock. Excluding IE, the average across countries
of the Rmsre with the CUBS, the two-, and the one-step method amounts to 0.34, 0.34, and 0.38
pp. respectively, which represents roughly 45% of the cross-country average standard error of
potential growth in the Autumn 2022 vintage. A 20% reduction in Rmsre is recorded only for
CY with all indicators. Otherwise, the new indicators do not help stabilising potential TFP growth
estimates compared to CUBS 3.

3This outcome does not confirm the results in Carstensen et al. (2023) who report a 25% decrease in revisions
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4.3. CONCLUSION

Complementing CUBS with further survey indicators does not seem to improve the TFP decom-
position, at least along the dimensions we explored. The one-step approach where all indicators
are included without aggregation always reduces the amount of commonality between the TFP
cycle and the indicators compared to EUCAM. Aggregating the indicators into a principal compo-
nent yields a decomposition which is closer to EUCAM compared to the one-step approach, most
probably because it preserves the model specification contrary to the one-step alternative which
requires removing further noise from the indicators. Also, some indicators like new-orders and
production expectations are sometimes more related to the change in TFP cycle rather than to the
cycle level. No stabilisation effect appears: EUCAM and the two-step approach yields the equal
revisions on average across countries, while the one-step approach increases the magnitude of
revisions by roughly 10%, still on average across countries.

5 ROBUSTNESS TO ASYMMETRY MODELLING

Since the first contributions by Neftci (1984), Falk (1986), and Sichel (1993, 1994), many empir-
ical studies have reported evidence of asymmetric patterns in cyclical macroeconomic variables,
leading to the prevailing view that the economic cycle evolves asymmetrically. If TFP behaves
accordingly, taking asymmetry into consideration may be expected to improve the trend-cycle
decomposition. To check whether TFP and CUBS series from EU27 embody asymmetric patterns,
we test the significance of the squared moment coefficient of skewness of the univariate innova-
tions in the Solow residual and in the CUBS series, say Iℓt with standard deviation σℓ, ℓ = sr, cu,
and of the aggregate coskewness which involves the mixed third-moments. These statistics are
defined by:

Sk2ℓ = E(
I3
ℓt

σ3
ℓ

)2 ℓ = sr, cu

ACosk = 3E(v2srtvcut)
2 + 3E(vsrtv

2
cut)

2 (10)

where vsrt and vcut denote the standardised innovations4. Properly rescaled by 6/T , the empirical
counterparts of (10) are asymptotically χ2

d-distributed with respectively d = 1 and d = 2 degrees of
freedom. Considering both univariate skewness and aggregate coskewness offers some insights
into the source of asymmetry. For instance, since in the EUCAM model (1)− (2) the cyclical shocks
act are common to the two endogenous variables, significance of aggregate coskewness suggests
the presence of asymmetry in the cyclical shocks. In the absence of coskewness, significance
of univariate skewness suggests the presence of asymmetry in the shocks to potential growth
and to the idiosyncratic portion of capacity utilisation. The empirical results are shown in Table
5.1 for EU27 countries minus BG and HR. All calculations are made using the Autumn 2022 data
vintage. Significant values are displayed in bold, the 5% critical value of χ2

d distribution with one
and two degrees of freedom being respectively equal to 3.84 and 5.99.

following the addition of new survey indicators to proxy capacity utilisation. Possible reasons for the different outcome
include the focus on vintages 2013-2022 instead of 2005-2021 in Carstensen et al. (2023), a two-step approach that is
simpler than in Carstensen et al. (2023), and the use of real-time priors instead of the Autumn 2021 prior in Carstensen
et al. (2023) which may have increased the revision errors.

4The standardisation is made by post-multiplying the T × 2 matrix of innovations in model (1)-(2) by their empirical
variance-covariance matrix raised to power -1/2.
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For 23 countries out of the 25 examined, asymmetry is detected in either or both of the Solow
residual and CUBS. The countries where no evidence of asymmetry appears are CY and PL. EE
and EL are the only instances where the skewness of TFP is significant but not the coskewness,
suggesting asymmetry in the shocks to potential growth. There are 13 countries, namely AT,
BE, CZ, EE, FR, IT, LU, LV, MT, PT, RO, SE, and SK, where asymmetry is detected in CUBS while
coskewness is not significant, as if asymmetry were present in the idiosyncratic component of
CUBS. Coskewness is found significant for nine countries, namely DE, DK, ES, FI, HU, IE, LT,
NL, and SI: in these cases asymmetry seems related to the shocks to the TFP cycle. These
observations suggest extending the EUCAM model for TFP to account for asymmetry in the TFP
cycle and in the idiosyncratic component of CUBS, while leaving unchanged the distribution of
the shocks to potential.

Table 5.1 Tests of skewness and coskewness, vintage Autumn 2022

Univariate skewness Coskewness

logTFP CUBS

AT 1.20 7.09 0.58
BE 0.12 5.49 1.63
CY 0.00 1.47 0.14
CZ 0.01 16.25 0.97
DE 5.83 7.71 4.79
DK 4.94 0.95 4.69
EE 5.51 3.77 3.16
EL 4.29 2.40 4.22
ES 34.95 2.25 10.32
FI 6.93 2.84 6.74
FR 1.77 5.02 4.31
HU 2.96 4.83 5.03
IE 0.55 15.86 14.19
IT 0.58 7.38 0.96
LT 6.11 11.00 9.48
LU 0.74 16.24 3.44
LV 2.01 14.63 2.93
MT 0.27 8.75 1.22
NL 4.54 7.68 13.34
PL 0.01 0.66 1.41
PT 1.67 8.07 2.20
RO 0.19 3.51 1.80
SE 1.43 2.81 1.59
SI 6.22 10.08 8.60
SK 1.50 3.87 4.54

Notes: the 10% critical value of a χ2
d with one and two degrees of freedom are respectively equal to 2.71 and 4.61.

To incorporate asymmetry we turn to the Kim and Nelson (1999) econometric implementation of
the plucking model put forward by Friedman (1993). Friedman built the plucking model upon the
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observation that stronger expansions tend to follow deeper recessions but stronger booms are not
necessarily followed by deeper recessions. Hartley (2021) confirmed the plucking hypothesis in a
panel regression involving 169 countries, and Mills and Wang (2003) successfully tested the Kim
and Nelson model on GDP data from the G-7 countries. As it includes a trend-cycle decomposition,
the Kim and Nelson model fits well into the EUCAM framework, but some adaptation remains
necessary.

5.1. ADAPTING THE KIM AND NELSON MODEL TO ACCOUNT FOR ASYMMETRY

Kim and Nelson introduce asymmetry in a trend-cycle decomposition by substituting the standard
Gaussian assumption for the cyclical shocks with a mixture of normal distributions as in:

ϕc(L)ct =

{
act St = 1

−λc + (1 + δc)act St = 0
(11)

where St is a discrete latent variable which evolves according to a Markov process. During normal
regimes (St = 1), the cycle loads shocks with variance V (act) = Vc and it has a zero mean. Imposing
δc > 0 and λc > 0, during recessions (St = 0) the shocks take a larger variance V

(
(1 + δc)act

)
=

(1 + δc)
2Vc while the cycle shows a negative shift driven by parameter λc. The parameter λc thus

captures asymmetry in the cyclical shocks. Kim and Nelson also let the discrete variable St control
the magnitude of the shocks to level of the trend, but since EUCAM does not foresee shocks to
the level of potential, only potential growth evolving stochastically in (2), this feature is irrelevant
in our framework and is left ignored.

A straightforward incorporation of equation (11) in EUCAM is however ineffective due to an in-
compatibility with the prior distribution in current use for Vc. Indeed, on average across EU27
minus BG and HR, the current prior mean for Vc is such as E(Vc) = 9 × 10−4: this implies that, a
priori, 95% of the cyclical shocks lie into the interval ±6 pp., roughly. The current prior distribu-
tion for Vc is thus sufficiently large to accommodate the large negative shocks which characterise
the years 2009 and 2020. In order to detect recessions, the prior variance of cyclical shocks in
normal regimes must be reduced. In addition, equation (11) implies an unconditional mean for
the cyclical component which is strictly negative since E(ct) = −Pr(St = 0)λc/ϕc(1). This contrasts
with the zero-mean assumption for the cyclical component in EUCAM. Therefore, to enable the
detection of recessions and to ensure comparability with EUCAM, equation (11) is updated to:

ϕc(L)ct =

{
Pr(St=0)
Pr(St=1)λc + δcact St = 1

−λc + act St = 0
(12)

where the parameter δc, 0 < δc < 1, tempers the magnitude of cyclical shocks in normal times
while the constant Pr(St=0)

Pr(St=1)λc ensures E(ct) = 0. The constant Pr(St=0)
Pr(St=1)λc makes the cyclical shocks

preponderantly positive during normal regimes, which can thus also be interpreted as expansion
periods.

We experiment with the re-formulated Kim and Nelson model (12) incorporated into the EU-
CAM equations (1)-(2), which we label Model 1. Table 5.1 however provides some evidence of
asymmetry in the idiosyncratic component of capacity utilisation. We thus also experiment with
Model 2 where, in addition to (1)-(2)-(12), the process governing the idiosyncratic movements
of capacity utilisation in (2) is extended to:

(1− ϕcuL)ecut =

{
Pr(St=0)
Pr(St=1)λcu + δcuacut St = 1

−λcu + acut St = 0
(13)
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In (13), the idiosyncratic shocks of capacity utilisation are described with a mixture distribution
which mimics the one specified in (12) for the cyclical shocks. Both processes depend on the
same latent variable St, so capacity utilisation and the TFP cycle switch between regimes con-
temporaneously. Model 1 and Model 2 are fitted using the flat prior B(1.1, 1.1) for δc and δcu, and
B(1.1, 1.1)[0,0.2] for λc and λcu, in addition of the EUCAM priors for the other parameters.

5.2. EMPIRICAL COMPARISON

Regarding the 2009 recession, the two asymmetric models provide roughly similar posterior
inference: Model 1 detects the 2009 trough in 16 cases against 20 for Model 2. More variations
occur with respect to the Covid pandemic episode: the 2020 recession is detected in 7 countries
with Model 1 against 23 with Model 2. Overall, Model 2 infers that all countries of the panel have
undergone at least one recession, while with Model 1 there are five countries, BE, CY, CZ, LU,
and RO, where no recession is spotted. Allowing for contemporaneous regime changes in the
TFP cycle and in the idiosyncratic component of capacity utilisation as in (13) helps identifying
recessions.

Graph 5.1 shows the inverse signal to noise ratio obtained with the two non-linear models in units
of the EUCAM estimate. In the non-linear models the inverse signal to noise ratio amounts to(
P (St = 1)δ2cVc+P (St = 0)Vc

)
/Vη. The larger the ratio and the smoother the trend, so when given in

units of the EUCAM estimate, values above one indicate that the non-linear model yields a trend
that is smoother than in EUCAM. It is seen that, most often, taking asymmetry into account yields
potential TFP estimates which are more erratic than EUCAM’s ones. This feature follows from the
re-scaling of the variance of the cyclical shocks through δc which shrinks the prior mean of V (δcact)

and thus also the prior mean of the inverse signal to noise ratio: the prior δc ∼ B(1.1, 1.1) indeed
reduces the prior mean of V (δcact)/V (aηt) during expansions to roughly one-third of its value in
EUCAM5. On average across countries, Model 1 yields an inverse signal to noise ratio close to 0.6
in units of the EUCAM estimate against 0.5 for Model 2.

Graph 5.1 Inverse signal to noise ratio in
units of the EUCAM estimates

Model 1 vs Model 2
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Graph 5.2 Model-based correlation be-
tween the TFP cycle and CUBS

EUCAM, Model 1, and Model 2
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5Prior independence implies V (δcact) = E(δ2c )V (act) =
(
V (δc) + E(δc)2

)
V (act) ≃ V (act)/3.
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Graph 5.2 shows the model-based correlation between CUBS and the Solow residual cycle in
EUCAM vs the two asymmetric alternatives. The larger the correlation and the larger the weight
put on the capacity utilisation indicator in the estimation of the TFP cycle; in case of a zero-
correlation, the TFP decomposition corresponds to the one obtained in univariate modelling. The
average across countries amounts to 0.64, 0.66, and 0.75, respectively. EUCAM and Model
1 yields a similar correlation between CUBS and the TFP cycle while Model 2 foresees more
commonality due to the decrease in the magnitude of the idiosyncratic movements in CUBS
during normal regimes implied by the tempering parameter δcu.

Graph 5.3 shows the maximum difference in the post-2000 years between cycle estimates ob-
tained with the two asymmetric models compared to EUCAM. The maximum difference exceeds
1 pp. with both models for only one country among EU14, namely IE, and for three countries
among the eleven post-2004 Accession Countries, namely HU, LV, and SK. Again, more instability
is observed for this last group of countries. Slightly more departure is recorded with Model 2: on
average across countries, the absolute difference with respect to EUCAM amounts to 0.80 pp. for
Model 1 against 0.85 pp. for Model 2. Model 2 tends to generate larger departures than Model
1 as it estimates a more erratic potential growth, following the decrease in the inverse signal to
noise ratio illustrated in Graph 5.1.

Potential growth is more stable: as can be seen in Graph 5.4, differences larger than 0.5 pp.
are recorded with both alternative models only for HU, LT, and SK. Focusing on EU14, it is seen
that Model 2 can lead to differences of about 1 pp. in the case of EL, IE, LU, and PT, while Model
1 always yields differences smaller than 0.5 pp. On average across countries the maximum
difference amounts to 0.28 with Model 1 against 0.40 pp. with Model 2.

Graph 5.3 Maximum absolute distance to
EUCAM cycle estimates, Vintage Autumn
2022, period 2000-2022 (pp.)
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Graph 5.4 Maximum absolute distance to
EUCAM potential growth estimates, Vin-
tage Autumn 2022, period 2000-2022
(pp.)

Model 1 vs Model 2
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Graph 5.5 and Graph 5.6 show the Rmsre in cycle and potential growth estimates obtained with
EUCAM vs the two asymmetric alternatives. The Rmsre is calculated as in (9), making use of
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both real-time data vintages and real-time prior distributions which thus vary across vintage.
The three specifications yield a similar stability of concurrent cycle estimates: the cross-country
average Rmsre amounts to 0.93, 0.93, and 0.92 pp., respectively. These revisions represent 50%
of the cross-country average standard deviation of the Solow residual cycle calculated with the
Autumn 2022 data vintage. Again, potential growth is more stable across vintages: the cross-
country average Rmsre amounts to 0.40, 0.43, and 0.48 pp., respectively, and more instability
is observed for the post-2004 Accession countries. The large revisions recorded for IE, around
1.9 pp. with all methods, are due to data instability.

Graph 5.5 Rmsre in TFP cycle (pp.), vin-
tages 2013-2022

EUCAM, Model 1, and Model 2
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Graph 5.6 Rmsre in potential TFP growth
(pp.), vintages 2013-2022

EUCAM, Model 1, and Model 2
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5.3. CONCLUSION

The TFP model in EUCAM is compared to two alternative specifications which allow for asymmetry
in cyclical shocks and in the idiosyncratic component of capacity utilisation. These asymmet-
ric models are built upon the Kim and Nelson econometric specification of Friedman’s plucking
model. They are motivated by the results of Mardia test. By introducing a latent variable which
controls the succession of expansions and recessions, the asymmetric models provide a richer
inference compared to EUCAM. Yet fitting these two models necessitates tuning the EUCAM prior
distributions, which eventually hampers model comparison. In particular, it is seen that both
asymmetric models increase the variability of potential TFP, and that the correlation between the
TFP cycle and CUBS rises in presence of asymmetry in the idiosyncratic component of CUBS: both
outcomes are related to the tempering of shocks in normal regimes which is necessary to detect
recessions. The trend-cycle decomposition of the Solow residual provided by the two asymmetric
models remains however close to the EUCAM’s one: on average across countries, the maximum
departure lies below 1 pp. No improvement is obtained regarding revision errors. The EUCAM
trend-cycle decomposition of TFP seems thus reasonably robust to alternative specifications which
take asymmetry into account.
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6 OVERALL CONCLUSION

Potential output and the output gap are essential ingredients of the economic and fiscal policy
of the EU. The European Commission estimates both quantities by applying the methodology
known as EUCAM which has been agreed between Member States. This methodology involves
a decomposition of TFP into trend and cyclical components that makes use of information pro-
vided by capacity utilisation. Because disentangling trend and cyclical productivity in real-time
is notoriously difficult, it is important to thoroughly assess the robustness of this decomposition.
The robustness of the EUCAM decomposition of TFP is examined with respect to variations in
prior distributions, in the set of survey indicators, and in the assumption of cyclical symmetry.
Robustness to prior distributions is explored via a local sensitivity analysis and an informal ap-
proach. The local sensitivity analysis evidences that the EUCAM prior emphasises small values
for the magnitude of the shocks to potential TFP, which is justified by the smoothness require-
ment for potential growth in a context of noisy data. For the other parameters, the EUCAM priors
do not appear very informative compared to the data: local variations in prior means hardly
affect the trend-cycle decomposition, even when compounded effects are taken into account.
The exploration of a more extreme alternative like a flat prior for the parameters of the capacity
utilisation equation reveals that trend smoothness is favoured at the cost of a slight reduction
in the commonality between capacity utilisation and the Solow residual cycle. Nevertheless, the
trend-cycle decomposition appears to be generally robust to the prior of the parameters in the
capacity utilisation equation.

Turning to the robustness to the selection of survey indicators, we experiment with the inclusion
of the 12 survey indicators considered in Carstensen et al. (2023). Two strategies are tested:
a one-step approach where all indicators are inserted through a model update, and a two-step
approach which substitutes CUBS with the first principal component of a subset of indicators while
leaving unchanged the EUCAM specification. Due to the model update, the one-step approach
always reduces the amount of commonality between the TFP cycle and the indicators compared
to EUCAM. It follows that the one-step approach yields a decomposition which is farther to EUCAM
compared to the two-step approach: the average discrepancy across countries amounts to 1.86
pp. against 0.86 pp. Therefore, complementing CUBS with further survey indicators leaves the
TFP decomposition stable when the indicators are aggregated into a principal component which is
substituted to CUBS, but more variation is recorded when the indicators are inserted altogether in
an enlarged model. Whatever the approach, no stabilisation effect appears: the revisions remain
roughly equal.

Next, the TFP model in EUCAM is compared to alternative specifications which allow for asym-
metry in the TFP cyclical shocks and in the idiosyncratic component of capacity utilisation. These
extensions are motivated by the results of univariate and bivariate tests of skewness. Two asym-
metric models built upon the Kim and Nelson econometric specification of Friedman’s plucking
model are considered. The introduction of a latent variable which controls the succession of
expansions and recessions provides a richer inference compared to the linear specification in
EUCAM. Yet fitting these two models necessitates tuning the EUCAM prior distributions, which
eventually hampers model comparison. For instance, it is seen that both asymmetric models
increase the variability of potential TFP, and that the correlation between the TFP cycle and CUBS
rises when asymmetry is also allowed in the idiosyncratic component of CUBS: both outcomes are
related to the tempering of shocks in normal regimes which is necessary to detect recessions.
The trend-cycle decomposition of the Solow residual provided by the two asymmetric models

26



remains close to the EUCAM’s one, since on average across countries, the maximum departure
lies below 1 pp. No improvement are obtained regarding revision errors. Overall, the EUCAM
trend-cycle decomposition of TFP seems robust to alternative specifications which take asymme-
try into account. Given the additional complexity, these results do not justify extending EUCAM
to asymmetric models.

The TFP decomposition in EUCAM can thus be seen as reasonably robust to the departures in
model assumptions examined. Three regularities are worth noticing: focusing on vintage Autumn
2022, (i) the estimation results are more stable in EU14 than in the post-2004 Accession Coun-
tries, (ii) for each country the potential growth estimates show more firmness than trend-cycle
ones; across vintages, (iii) the alternative model assumptions explored yield no improvement
with respect to revision errors. Regularity (i) can be expected to dissipate in the future with
the incoming of additional observations. Regularity (ii) suggests that potential growth is better
captured than the output gap, which is probably due to its larger persistence. Regularity (iii) is
consistent with the possibility that the revisions in trend-cycle estimates are mostly due to the
corrections in TFP data.
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APPENDIX

To evaluate the partial derivatives of the posterior unobserved component estimates with respect
to the prior means in (3), one needs the derivatives d logπ(θℓ|h)

dE(θℓ|h) . They are provided below: terms
which are constant with respect to θℓ and thus irrelevant to the covariance with g(θ) = E(c|y, θ, h)
in (3) are written as cst, and to simplify the subscript ℓ is omitted. The EUCAM prior distributions
involve the following three cases:

• Normal given V (θ): if π(θ) = N(E(θ), V (θ)), then log(θ) = cst− 1
2V (θ)

(
θ − E(θ)

)2 and:
d logπ(θ)

dE(θ)
=

θ − E(θ)

V (θ)

• Beta: if π(θ) = Beta(a, b), logπ(θ) = − logB(a, b)+ (a− 1) log θ+(b− 1) log(1− θ), then E(θ) = a
a+b

and:

d logπ(θ)

dE(θ)
= cst+

∂(a− 1) log θ

∂a

/∂E(θ)

∂a
+

∂(b− 1) log(1− θ)

∂b

/∂E(θ)

db

= cst+ log θ
(a+ b)2

b
− log(1− θ)

(a+ b)2

a

For the periodicity parameter, the support is extended to lb−ub instead of (0, 1). In this case
E(θ) = lb+ (ub− lb) a

a+b so the derivative above must be divided by the support length ub− lb.

• IG2: if π(θ) = IG2(s, ν), logπ(θ) = cst− ν+2
2 log θ − s

2θ , then E(θ) = s
ν−2 and:

d logπ(θ)

dE(θ)
=

∂ logπ(θ)

∂s

/∂E(θ)

∂s
+

∂ logπ(θ)

∂ν

/∂E(θ)

∂ν

= − 1

2θ
(ν − 2) +

(ν − 2)2

2s
log θ
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