FAQ: How do I extract the output gap?

Fabio Canova, Norwegian Business School, CAMP and CEPR

September 2021

Newest version of the paper at: https://drive.google.com/file/d/15EGsbxp1g54SB4afKneLvnAlnjPkwsm/view

Introduction

- Great interest in star variables (potential output, natural rate of interest, NAIRU, etc.) and in the post-COVID nature of cyclical fluctuations.
- Policymakers want (i) to respond to gap fluctuations but not to potential changes; (ii) to know the state of the economy.
- Measurement of star variables elusive:

- Gap=
$$y - y^{Pot}$$
? $y - y^{Perm}$? $y - y^{trend}$?

- Measurement tools have no links to models used to interpret the dynamics of star variables.

• Policy analyses whimsical.

Plenty of academic discussion about behavior of latent variables:

• What is potential output post-2008? Coibion et al. (2018);

• Secular fall in the natural real rate? Laubach and Williams (2015); Del Negro et al. (2019).

- Properties of NAIRU? Crump et al. (2019).
- Cyclical dynamics of hours: Beaudry et al. (2019).
- Permanent and transitory exchange rates drivers? Schmitt-Grohe and Uribe (2019).

• Permanent effects of demand shocks? Jorda et al (2020); Furlanetto et al. (2019).

• The trend generates the cycle, Aguiar and Gopinath (2007); or the cycle drives the trend? Heathcote et al. (2020).

• How to extract cyclical fluctuations? Hamilton (2018); Hodrick (2020).

• V, U or L-shaped post-COVID recovery, see e.g. https://www.brookings.edu/ blog/up-front/2020/05/04/the-abcs-of-the-post-covid-economic-recovery/ or

https://www.weforum.org/agenda/2020/04/alphabet-soup-how-will-post-virus-economic-recovery-shape-up/

• Which models match business cycle facts? Angeletos et al. (2019).

This paper

• Investigates the relationship between **theoretical gaps** (or transitory fluctuations) and cycle estimates using a lab experiment.

- Use standard NK models as DGP. Simulate:
- Potentials and gaps.
- Permanent and transitory components.
- Apply a number of filters to simulated data sets. Rank filtering procedures and explain the outcomes.

• Design a new filter for gaps extraction that uses basic information from NK models.

General points

• Models driven by persistent shocks produce gap and potentials with similar properties (and they are correlated).

• No filter assumes that latent components have similar spectral properties. Large distortions.

Horse race results 1: Gap extraction

- The *least distorting* is **Polynomial filtering**. Why?
- With Polynomial filtering the frequency distribution of the variance of the gaps undistorted. Estimated cycles display some low frequency variations.
- Conclusions independent of sample size and filters' parameters. Horse race results 2: Transitory fluctuations extraction
- The *least distorting* is **differencing**, **Polynomial filtering** close second.
- Distortions larger because at business cycle and high frequencies permanent fluctuations matter a lot.
- Small samples affect the ranking; the parameters of the filters do not.

What do we take home?

- If standard NK models are credible, standard filters inappropriate.
- All distort, some more some less.
- Use models to measure time path of latent components.
- Design alternative filters which exploit information models provide

The design of the experiment

- Standard NK model with equations for level and potential variables.
- Baseline setup: all disturbances stationary. Alternatives:

• i) TFP has a unit root; ii) TFP has a unit root and "the trend (unit root) creates the cycle" (Aguiar-Gopinath, 2007); iii) TFP has a unit root and there are no government spending and investment shocks; iv) TFP has a unit root and there are financial frictions (SW-FF, CMR); v) TFP has a unit root but the model is semi-structural (ECB-base).

• Sample sizes: T=150,750; replications: N=100.

Filters

- Polynomial regression (order 2).
- HP ($\lambda = 1600$).
- Short (1 quarter) and long (24 quarters) differencing.
- BP (non-symmetric time varying Christiano and Fitzgerald, 2003, 8-32q cycles); Wavelets (8-64q cycles).
- Hamilton (2018) local projections: h=8, d=4.
- UC: trend is a random walk; cyclical an AR(2), potentially correlated disturbances (MCMC implementation).
- BN/BQ VAR based measures (with output growth and hours)

Properties of the DGP

- How does the spectrum of gaps and potentials look like in a baseline NK model?
- How different are the spectrum of gaps and transitory components?
- Do the spectral properties of gaps depend on the calibration/features of the model (e.g. presence of shocks, absence of financial frictions)?
- Do they depend on modeling principles?

-4

-6

-8

-10

0

p=32 p=8

1

2

Frequency

3

-4

-6

-8

0

-

3

2

Frequency

p=32 p=8

1

2

Frequency

3

-6

-8

-10

0

p=32 p=8

1

Keys to understand the results 1: Gap and Potential

- Gaps have important low frequency variability; potentials significant business cycle variability.
- Potentials and gaps have similar distribution of variance by frequency.
- They are driven by the same shocks and have similar persistence.
- Details of the generating economy not important (shocks driving the economy, financial frictions, etc.).
- Patterns in models with different (micro-) foundations similar.

Key to understand results 2: Permanent and Transitory

• Permanent/transitory components display similar distribution of the variance by frequency but they are **uncorrelated**.

• Permanent component: non-stationary, driven by TFP only. Variability at business cycle frequencies important

• Transitory component: stationary, driven by all other shocks. Low frequency variability more important than business cycle variability.

• With unit roots, gaps not interesting (they have both permanent and transitory components). Gaps "never close".

• Gaps \neq Transitories; Potentials \neq Permanents.

Statistic	POLY	HP	FOD	LD	BP	Wa	Ham	UC	BN	BQ		
	Gap											
MSE	5	3						1	0.5	0.5		
Corr	9								0.5	0.5		
AR1	4			3		3						
Var	4			2		3	1					
TP	1.5	5	2	1.5								
RT-MSE		1				3	2	3	0.5	0.5		
PC	2											
OL				1			1					
Total	25.5	9	2	8.5	0	9	4	4	1.5	1.5		
				٦	Frans	sitory						
MSE			9					1				
Corr												
AR1	4					5.5		0.5				
Var	3			6			1					
TP	4	4		2								
RT-MSE			4					6				
PC				1						1		
OL				2								
Total	11	4	13	11	0	5.5	1	7.5	0	1		

Table 2: Summary results across variables, SW DGPs, T=750

Focusing on output gap/transitory output

Table 3: Summary results across statistics, different DGPs, T=750

	Output gap									
DGP	POLY	HP	FOD	LD	BP	Wa	Ham	UC	BN	BQ
SW	6	3	1	1			2	1		
SW_FF	10	1	1	2						
CMR	2	2	1	2	0.5	2		1		2.5
SW_5	4	6	1	1				1		1
Total	22	12	4	6	0.5	2	2	3		3.5
			-	Tran	sitor	y Ou	Itput			
SW(unitroot)	2	3	2	4	1					1
SW(trendcycle)	1	4	2			2	1		3	
Total	3	7	4	4	1	2	1		3	1

Why do we get these results? Filters properties.

- What are the squared gains of the filters?
- Can any filter mimic the DGP of the gap?

Key to understand results 3: Filter properties

• All low frequency variance typically attributed to trend; all BC (and high frequency) variance attributed to cycle. Exceptions: Polynomial, UC, and Wavelets.

- Persistence of the trend larger than persistence of the cycle.
- Components assumed uncorrelated (exceptions UC, BN).
- Assumptions to identify components do not hold in the DGP.

Zooming in on popular filters: HP and BP

• HP (and BP) poor: why? They leave too much low frequency variations in trend.

• With $\lambda = 51200$ (lower ω_1) cycle has approximately the right amount of low frequency variations. Still the trend has too little business cycle power.

• HP λ is not var(cycle)/ var($\Delta(\Delta(trend))$) when components have similar spectral properties, are correlated, and gap not iid. Low UC/LP estimated inapplicable (see Hamilton, 2018).

Raising star: Hamilton's LP

- LP not much better than standard HP. Potential reasons:
- Estimated cycle has too much high frequency and too little low frequency variations (crucial).
- Estimated squared gain has zero in correspondence of the horizon of the projection (minor).
- Gaps and potentials are assumed to be uncorrelated (minor).
- LD has the same latter two problems, but much better performance.

_ - - -

-10

- -

VAR approaches

• VAR-based procedures: ok for hours, bad for output.

• For gaps extraction: too much low frequency variability is attributed to the transitory output component. Why?

• Misspecification: output is overdifferenced.

• Assumption that components are uncorrelated (BQ) or correlated (BN) makes little qualitative difference.

• For transitory component extraction: no overdifferencing; still too much low frequency variations in the cycle.

• Coibion et al. (2018): post 2008 measures of potential bad; use BQ to get output potential.

• Is it better? Potentials/Permanent component have very long swings. Permanent has little business cycle fluctuations. Why?

• Deformation (Canova and Ferroni, 2021) 7 structural disturbances compressed in 2 (3) innovations; states of model are missing in VAR.

• Persistence of components increased; correlation between true and estimated structural shocks low (e.g. estimated supply and TFP shocks is 0.43).

• Short samples will add to the problems, see Erceg et al., 2005.

Where to go next?

- Estimate a structural model and construct model-based latent components, e.g. Christiano et al. (2010), Justiniano, et al. (2013); Furlanetto et al. (2020).
- If misspecification is a concern use Canova and Matthes (2021a, b) **composite posterior approach** to robustify inference.
- Design a filter with better properties, given this type of DGP.

Statistic	POLY HP FOD LD BP Wa Ham UC BN BQ									BW	
	Gap										
MSE	5	3						1	0.5	0.5	8
Corr	9								0.5	0.5	8
AR1	4			3		3					6
Var	4			2		3	1				
TP	1.5	5	2	1.5							3
RT-MSE		1				3	2	3	0.5	0.5	8
PC	2										2
OL				1			1				
Total	25.5	9	2	8.5	0	9	4	4	1.5	1.5	35
MSE			9					1			
Corr											
AR1	4					5.5		0.5			1
Var	3			6			1				1
TP	4	4		2							3
RT-MSE			4					6			
PC				1						1	
OL				2							
Total	11	4	13	11	0	5.5	1	7.5	0	1	5

Table 2: Summary results across variables, SW DGP, T=750

	Output Gap										
DGP	POLY	Υ HP	FOD	LD	BP	Wa	Ham	UC	ΒN	BQ	BW
SW	6	3	1	1			2	1			7
SW_FF	10	1	1	2							7
CMR	2	2	1	2	0.5	2		1		2.5	
SW_5	4	6	1	1				1		1	7
Total	22	12	4	6	0.5	2	2	3		3.5	21
				Tr	ansi	tory	' outp	out			
SW(unitroot)	2	3	2	4	1					1	3
SW(trendcycle)	1	4	2			2	1			3	7
Total	3	7	4	4	1	2	1		3	1	10

Table 3: Summary results across statistics, different DGPs T=750

Conclusions and additional open questions

• If standard models driven by persistent shocks generate the macroeconomic data we observe, toolkit of filters for star (latent) variable extraction inappropriate.

• Could go structural. Do policymakers want to do so? Despite 20 years of NK-DSGEs, little consensus on the model to be used.

• Could design better filters: BW could be one.

• What are the properties of trend/cycles of real data when a BW filter is used? Can a standard NK model match the stylized facts that are produced?

• Are real and financial cycles really different? In SWFF and CMR models they are not. And in the data?