W|**F**O

TEL. (+43 1) 798 26 01-0 FAX (+43 1) 798 93 86 ÖSTERREICHISCHES INSTITUT FÜR WIRTSCHAFTSFORSCHUNG AUSTRIAN INSTITUTE OF ECONOMIC RESEARCH

1030 WIEN, ARSENAL, OBJEKT 20 • http://www.wifo.ac.at A-1030 VIENNA – AUSTRIA, ARSENAL, OBJEKT 20

Business Cycle Dynamics and Firm Heterogeneity *Evidence for Austria*

Jürgen Bierbaumer-Polly and Werner Hölzl

ECFIN BCS Workshop

Brussels 14 Nov 2016

Business cycle analysis usually focuses on the macro level.

 Microdata at the firm level can contribute to a better understanding of the behaviour of aggregates (Higson et al., 2002; Basile et al., 2014) or even help to produce better forecasts (Strasser and Wohlrabe 2016)

-> role of firm heterogeneity

 Shocks specific to industries/regions may also influence aggregate outcomes and impact the business cycle (Granularity hypothesis of Gabaix 2011)

-> role of industry/regional heterogeneity

- BTS data is usually studied with regard to the aggregate consistency of the business tendency survey responses over time (business cycle dimension)
- Our research objectives
 - We are interested in micro-consistency i.e. whether lagged variables contain useful information at the firm level
 - Take (observable) heterogeneity into account in modelling business cycle dynamics; i.e. adding firm-level, industry-/regional-specifics -> is there a role for structural/regional dimensions?
 - NEW! Is there a relationship between the size of the "explained" component and uncertainty or the state of the business cycle?

- Business tendency survey (WIFO Konjunkturtest) data-> firm-level
 - Manufacturing industry, 2772 firms
 - Time period 1996 to 2012
 - Around 55.000 quaterly observations
- Employment data (Austrian social security database)-> industry-/regional-level
 - (break of time series prevents use of industrial statistics)
 - Sectoral (NACE-3-digit) break-down
 - Regional (NUTS-3-level) break-down
 - Monthly observations

Firm-level (business cycle dimension)

Owertige	Economic	()	exp. Effect /
Question	Process ¹⁾	Timing ²⁾	Correl. ³⁾
Production (change), next 3 months	Expectations	lead	+
Selling prices (change), next 3 months	Expectations	lead	+
Firm's employment (change), next months	Expectations	lead	+
Firm's business sentiment (level), next 6 months	Sentiment	lead	+
Total order books (level), current	Demand	lead	+
Factors limiting productions ⁴⁾	Demand/Supply/Finance	lead/co	-
Stocks of finished products (level), current	Demand/Production	со	-
Selling prices (change), past 3 months	Demand/Production	со	+
Capacity utilisation (level)	Production	со	+

Notes: 1) Classification according to Oppenländer (1996, p. 27). 2) The timing notation indicates the expected temporal pattern with respect to the current production activity of a firm: lead=leading; co=contemporaneously. 3) The "+" and "-" sign indicates the expected change of current production output based on an increase of the respective survey indicator. Its also an indication of the pro-/countercyclicality of the indicator. 4) We test for two (out of six) categories: insufficient demand and financial constraints.

4

Structural dimension

- Firm-level
 - Firm size and industry affiliation
- Industry-specific indicators (time averages)
 - Excess labour turnover as proxy for mobility barriers/sunk costs
 - Avg. Employment growth and No. of employees
- Regional-specific indicators
 - Sector concentration (related variety; Frenken et al., 2012)
 - Employment concentration (Herfindahl type index)
 - Local externalities (aggregate output in region x employment density; Basile et al., 2014)

Proxy for the 'aggregated' business cycle

 Question on "Our production has been ... in the last 3 months? (a) increased, (b) remained the same, or (c) decreased"

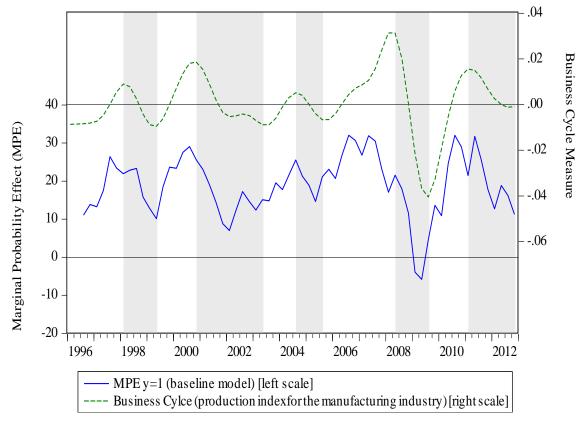
ordered probit model

- Correlated random effects (Wooldridge, 2002)
- Maximum likelihood estimation
- Assuming same thresholds across individuals (strong assumption)
- Interested in marginal effects

Step 1: Proxy for the 'aggregated' business cycle

• Model
$$y_{it}^* = \eta_t + c_i + u_{it}$$
,

with $i = 1, \dots, N$; $t = 1, \dots, T$

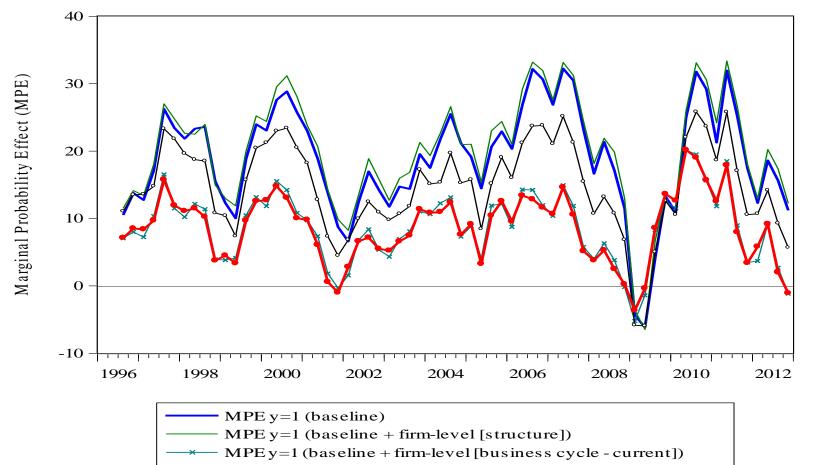

Figure B1: Marginal probability effects of time-dummies $(y_{it} \in \{1,2,3\})$

40 40 30 30 **Positive answers** Marginal Probability Effect (MPE) Marginal Probability Effect (MPE) 20 20 10-10 0 -10--20 -10 Negative answers 1996 1998 2006 2008 2010 2012 2000 2002 2004 -20 -1998 2004 2006 2008 2010 2012 1996 2000 2002 MPEy=1 (baseline model) MPEy=2 (baseline model) Confidence interval MPEy=3 (baseline model) MPE y=1 (baseline model) 7 Q: 15.11.2016 Confidence interval

 Correlation of the marginal effects (positive answers) with the business cycle component of IP: 0.72

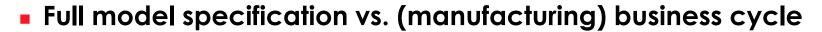
• Model
$$y_{it}^* = \eta_t + c_i + u_{it}$$
, with $i = 1, ..., N$; $t = 1, ..., T$

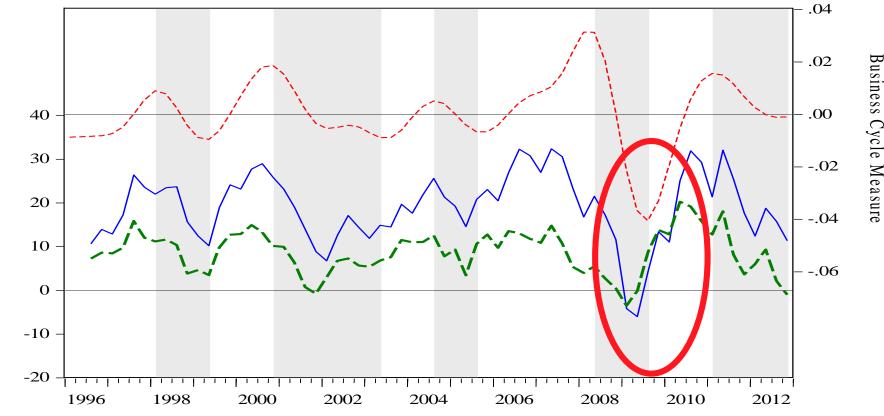
Full estimation results

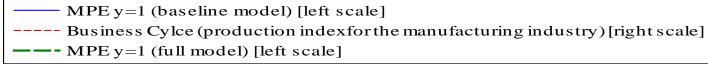

Fi	ndings (mpe of y=1)	Short- run respor shock Firm-	level	erages – long run level effect
ſ	Order books _{t-1}	+0.12	+0.49	
	Insufficient demand	-0.15	n.sig.	
current	Stock of finished products	-0.10	+0.13	
cn	Selling prices	+0.10	n.sig.	
	Capacity utilisation	+ 0.01	-0.01	firr
expectations	Production _{t-1}	+0.22	+0.05	firm-level
	Selling prices _{t-1}	-0.03	n.sig.	<u>e</u>
	Employment _{t-1}	+0.06	n.sig.	
	Business sentiment _{t-1}	+0.05	n.sig.	
structure	 Firm size 	-0.05	+0.05	
	Industry	[n.]sig.	[n.]sig.	
	Regional	n.sig.	n.sig.	

15.11.2016

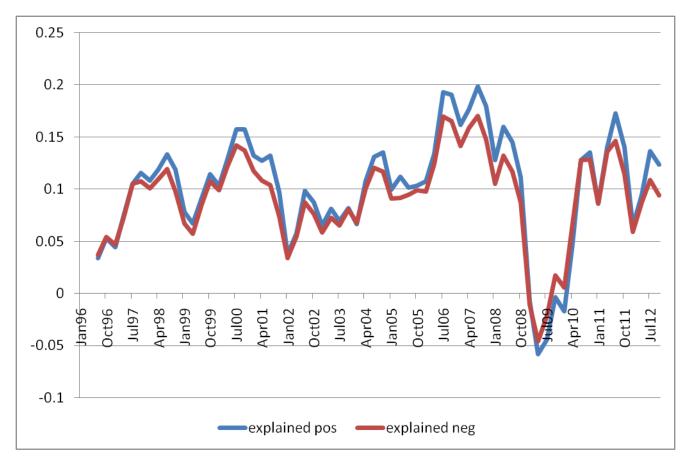
9


Explanatory power of the firm-level covariates





→ MPE y=1 (baseline + firm-level [full])



11

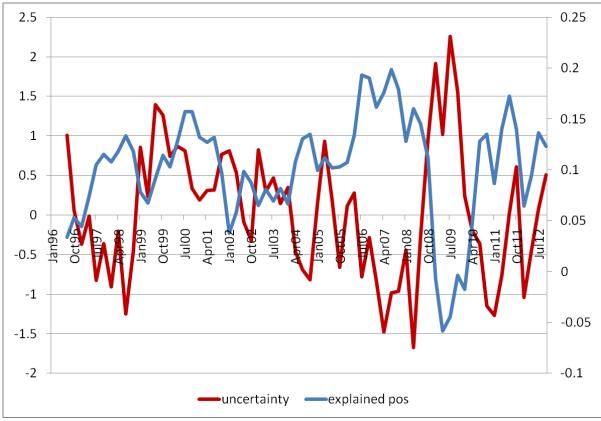
WIFO EXPlained by the covariates other than the fixed effects

Difference between fixed effects of the baseline and the full model

WIFO Role of uncertainty and business cycle

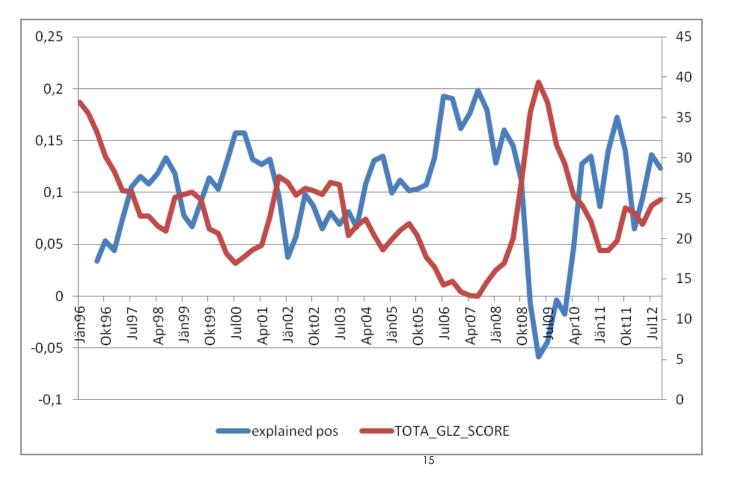
We measure uncertainty I using production expectations (Bachmann)

 $\sqrt{\text{%age POS}_t + \text{%age NEG}_t - (\text{%age POS}_t - \text{%age NEG}_t)^2}$

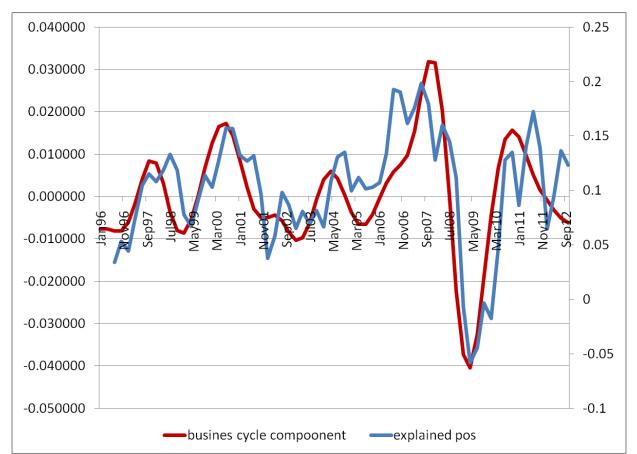

Cross-sectional Standard deviation – uncertainty as disagreement

Uncertainty II – score from WIFO question: on "how certain/uncertain" respondents assess their own expectations

Business cycle: business cycle component of industrial production 13



- Correlation: -0.53
- Higher uncertainty covariates explains less
- Unexpected changes in sentiment?


WIFO Uncertainty II: direct survey measure

- Correlation: -0.87
- Higher uncertainty covariates explains less

- Correlation: +0.83
- Downturns covariates explains less.
- Good weather model? Are downturns unexpected/uncertain?

- We find consistency of current assessments and expectations over time within the BTS:
 - The behaviour of the marginal effects follows closely the business cycle component of industrial production in Austria.
 - Current covariates are informative. From the covariates related to the assessment of the current situation, order books (t-1), demand conditions and capacity utilisation show the highest explanatory power.
 - Expectations are informative. From the covariates related to expectations (the coming months) production expectations (t-1) exhibits the greatest effect.
- With respect to structural characteristics
 - we find a (weak) negative ('left over') effect for firm-size,
 - no effect for industry affiliation but some evidence for industrycharacteristics (e.g. excess labour turnover);
 - regional aspects do not play a role in Austria

- Is there a relationship between the size of the "explained" component and uncertainty or the state of the business cycle?
 - Yes, the covariates have more explanatory power during upturns than during downturns and when uncertainty is low.
 - Further research: disentangeling uncertainty and the state of the business cycle.

Thank you for your attention.

<u>Contact details</u> Werner Hölzl werner.hoelzl@wifo.ac.at