Trends at the frontier in Corporate R&D in the digital era

ARC 2018 Brussels

Reinhilde Veugelers

Full Professor at KULeuven, Senior Fellow at Breugel

Predicted rising inequality/concentration

- Rising income inequality and falling labour share
- Observed growing concentration in corporate sector of sales and employment (Autor et al (2016) for US (1982-2012), De Loecker and Eeckhoudt, 2017)
- Rising concentration especially perceived in digital sectors, cf Big Tech — Competition Policy Cases

Higher Concentration and (digital) technology innovation

Growing concentration in product markets and its positive or negative impact associated with innovation

- 'Autor et al (2016): More concentration in industries where productivity increases and technical change is higher
- Andrews, Criscuolo & Gal (OECD, 2017) show an increasing productivity gap between the global frontier and laggard firms
 - This productivity divergence remains after controlling for the ability of frontier firms to charge higher mark-ups

Positive or negative impact of higher concentration associated with innovation

- © Disruptive innovation by Superstar firms with higher productivity (Schumpeter Mark II)
- © Incremental innovation by incumbents riding on stock of accumulated assets and experience (Schumpeter Mark I) Acemoglu & Hildenbrand (2017) argue that incumbent innovation advantage has increased over time

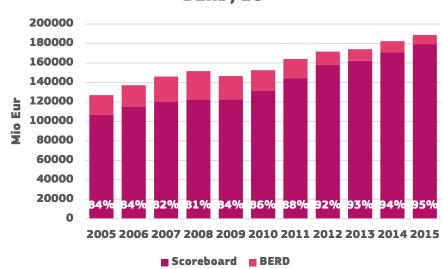
Our Research Questions

Does the global corporate R&D landscape become increasingly more concentrated in a few 'superstars'?

- Compared to concentration in sales/employment
- Who are these innovation superstars: incumbents or new leaders?...
- Where are they from? US, Europe, China
- Sector-specific trends: digital

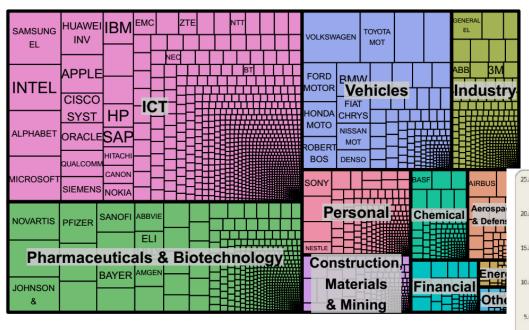
What do we expect: (digital) technological change is predicted to lead to 'winner takes most' industries

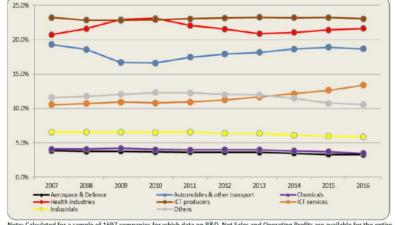
- Economies of scale & scope in the R&D process, large sunk investments for building R&D capacity, the need to access networks and alliance partners are all characteristics that lead to R&D races increasing characterized as "winner take most" (Schumpeter Mark I: big firms for R&D)
- **Cumulativeness** of knowledge stocks, learning, where incumbent firms are the most likely winners (Schumpeter Mark I: incumbent firms for R&D).
- Sales Concentration in fewer firms more likely in industries characterized by competition through sunk R&D investments (Sutton (1992))


However

- The speed with which the latest technological innovations get **diffused** or spill over voluntarily or involuntarily will lead to catching up and dissipating of previous leadership positions.
- Incumbent technology leaderships can be quickly overturned by **radically new** technology avenues, creating room for new winners (Schumpeter Mark II). Even if the landscape will still be concentrated: turbulence in leadership

Our sample: Scoreboard firms: largest R&D spending firms worldwide


- The scoreboard firms cover
 >90% of EU BERD
 - On average >80% worldwide
- We will only be characterizing the R&D distribution in the top parts of the R&D size distribution
- Scoreboard sample size increases over time (we construct a constant timecomparable sample)



The top corporate R&D investors and the growing importance of digital

EC-JRC-IPTS Industrial R&D Scoreboard (Largest R&D spenders worldwide, 2005 – 2015)

Note: Calculated for a sample of 1697 companies for which data on R&D, Net Sales and Operating Profits are available for the entire period 2007-2016.

Source: The 2017 EU Industrial R&D Investment Scoreboard. European Commission, JRC/DG RTD

Full list of 2500 JRC Scoreboard companies by size of R&D expenditure, **2015**

Corporate R&D concentrated in few firms

- R&D expenditures by Scoreboard firms are concentrated in few firms
 - In 2015, the Top 10% of Scoreboard firms represent 71% of all Scoreboard R&D expenditures.
 - The Top 1% of R&D spenders account for 27% of all European R&D scoreboard expenditures.

- R&D expenditures by Scoreboard firms are highly unevenly distributed and concentrated in few firms
- The distribution of sales and employment of Scoreboard firms is also highly unequal and concentrated, but less so than their R&D expenditures.

INEQUALITY

CONCENTRATION

	Theil	Gini	Share of				
			Top1%	Top10%	Top10	Top100	
R&D	1.47	0.76	27%	71%	14.6%	53.1%	
SALES	1.32	0.77	22%	66%	12.4%	47.4%	
EMPL	1.14	0.74	17%	62%	9.53%	44.4%	

	Theil (total)	% of Theil due to "Between" TOP10- BOTTOM90	% of Theil due to "Within" TOP10& BOTTOM90	Within TOP10% Theil	Within BOTTOM90% Theil
R&D	1.47	71%	29%	0.43	0.38
Sales	1.32	39%	61%	0.56	1.08
Employment	1.14	30%	70%	0.44	1.06

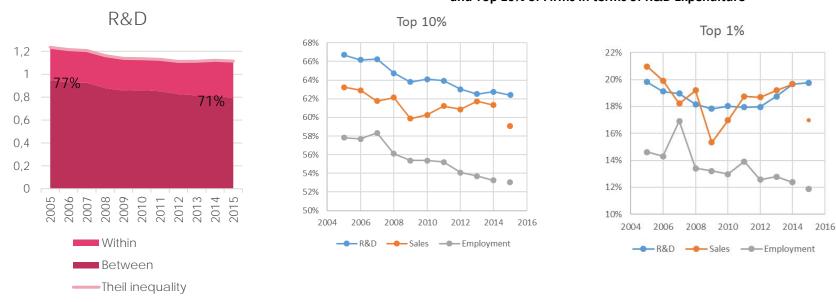
<u>Source</u>: Calculations on the basis of EC-JRC-IPTS R&D scoreboard data, latest version

High inequality & concentration of R&D in Health & Digital (services)

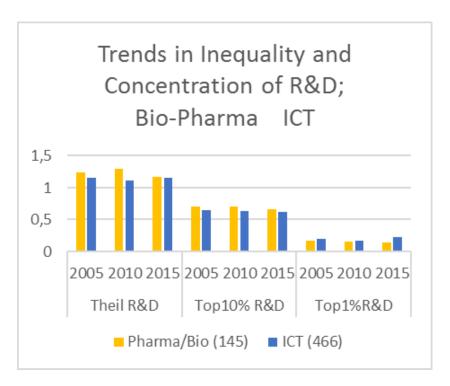
2015	ALL SECTORS	Bio Pharma	Digital	Digital Services	Cars
N	2498	369	852	297	156
Theil R&D	1.47	1.78	1.50	1.60	1.42
Theil Sales	1.32	1.83	1.59	1.66	1.20
Theil Empl	1.14	1.65	1.30	1.56	0.86
Top1% R&D ShareR&D	27%	25%	31%	34%	20%
Top10%R&D Share R&D	71%	83%	70%	71%	73%
Top10%Sales Share Sales	66%	84%	74%	75%	66%
Top10%Empl Share Empl	62%	76%	67%	72%	52%

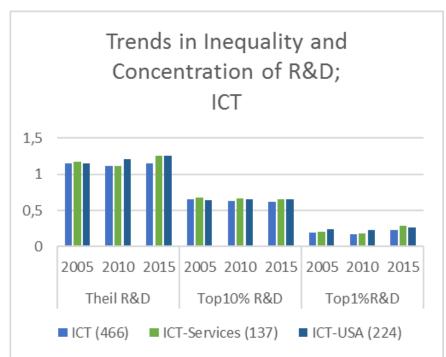
 $\underline{Source} {:} \ \ Calculations \ on \ the \ basis \ of \ EC\text{-JRC-IPTS} \ R\&D \ scoreboard \ data, \ latest \ version$

Trends in Concentration


- No increasing inequality in R&D, on the contrary, the trend is one of slow decline.
 - Nevertheless, this downward trend seems to have stopped since 2011.
 - Since 2012, the Top1%
 R&D spenders have forged ahead.

High inequality/concentration slowly declining over time

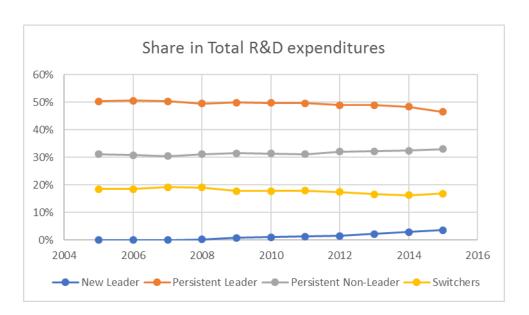

Theil decomposition over Top 10% - Bottom 90%


Share of Scoreboard Employment, Sales and R&D Expenditure of the Top 1% and Top 10% of Firms in terms of R&D Expenditure

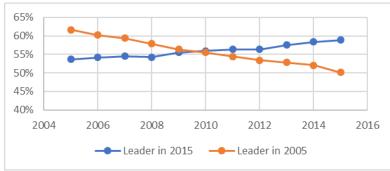
Source: Calculations on the basis of EC-JRC-IPTS R&D scoreboard data

In ICT/Digital: decreasing concentration in Top 1% stopped more recently (US digital services)

 $\underline{Source} \colon \mathsf{Bruegel} \ \mathsf{calculations} \ \mathsf{on} \ \mathsf{the} \ \mathsf{basis} \ \mathsf{of} \ \mathsf{EC}\text{-}\mathsf{JRC}\text{-}\mathsf{IPTS} \ \mathsf{R\&D} \ \mathsf{scoreboard} \ \mathsf{data}, \ \mathsf{latest} \ \mathsf{version}$


Corporate R&D concentrated in few incumbents: Schumpeter Mark II

- When looking at who inhabits the top, the data show a strong incumbency advantage
 - Those few firms that have been able to be a Top10% leading R&D firm within their sector throughout the period covered, represent more than half of the corporate R&D worldwide.
 - Incumbency is also demonstrated by the high share which leaders in 2005 can still command in 2015 and vice versa.


Persistency in R&D leadership

Among the 1314 time traceable Scoreboard companies

- 6% (N=83) are persistent leaders (i.e. belonged to the Top 10% across almost the entire time from 2005 till 2015, ie 10 or 11 times).
- 83% are persistent non-leaders, ie never belonged to the Top10%.
- Only 9 firms are "new leaders", ie companies entering the Scoreboard in the Top10% and stay among the group of leaders in all years until 2015 (one lapse allowed).
- The rest are switchers, ie moving in and out of top leadership position.

Share in Total R&D expenditures

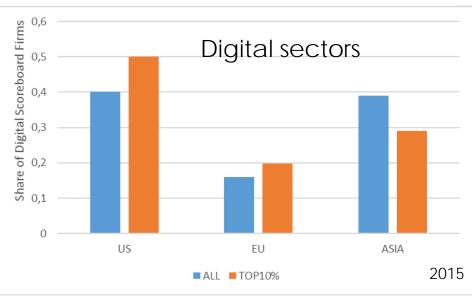
Source: Bruegel calculations on the basis of EC-JRC-IPTS R&D scoreboard data

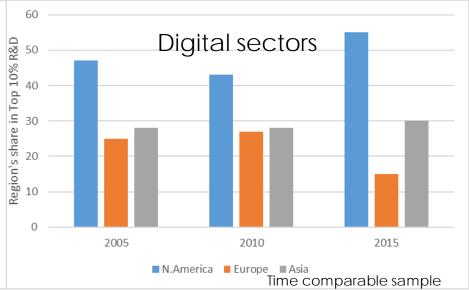
Persistency of Leadership in Digital

Digital (N=466)	Share of sector R&D 2005	Share of sector R&D 2015
Persistent top 10% firms (5%)	46%	43%
Old firms (40%)	62%	40%
Youngest firms (28%)	9%	19%
Top 10% firms in 2005	64%	48%
Top 10% firms in 2015	43%	62%

Next to Alphabet, Microsoft, Cisco, Oracle and Qualcomm as young persistent leaders, there is also in 2015 Huawei in 5th position, Apple in 6th, Facebook in 12th position. None of these young new R&D leaders are EU.

Persistency of Leadership in BioPharma


Bio/Pharma (N=145)	Share of sector R&D 2005	Share of sector R&D 2015
Persistent top 10% firms (7%)	60%	54%
Old firms (48%)	85%	76%
Top 10% firms in 2005	68%	63%
Top 10% firms in 2015	57%	63%


There are 11 persistent R&D leaders (Novartis, Roche, J&J, Pfizer, Merck, BristalMyersSquibb, Sanofi, AstraZeneca, Bayer, GSK, EliLilly) in BioPharma. All of these persistent leaders are "old".

A few young (biotech) firms made it close to this group of 10: Abbvie; Amgen, Celgene, and Gilead Sciences. All of these companies are US.

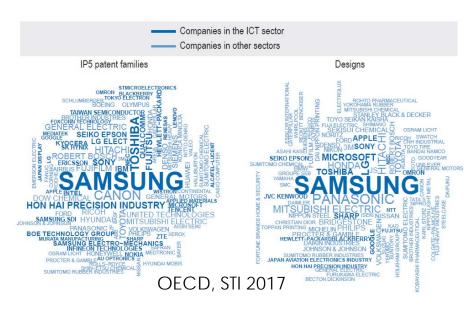
EU's position at the (digital) corporate R&D frontier

Corporate R&D concentration:

beyond R&D

- Also innovative output in the form of patents are highly concentrated.
 - In 2014, the top 10% of corporate R&D investors accounted for 61% % of IP5 patent families (inventions patented in the five top IP offices) (68%) of Scoreboard R&D)
 - The top 1% of corporate R&D investors accounted for 15% of IP5 patents families

Source: OECD, STI 2017

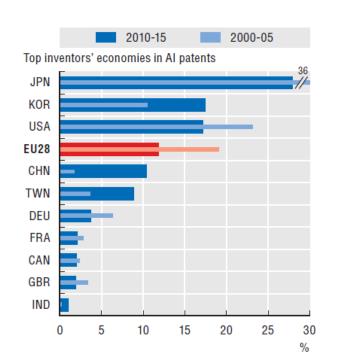


The digital patent landscape concentrated in few

The digital patent landscape is highly concentrated in top R&D investors

Top corporate R&D investors in the "Computers and electronics" industry are, by far, the most reliant on intellectual property (IP) rights and account for about one-third of total patent filings by top R&D investors.

They account for the ownership of about **75% and 55% of global ICT-related patents and designs**, respectively



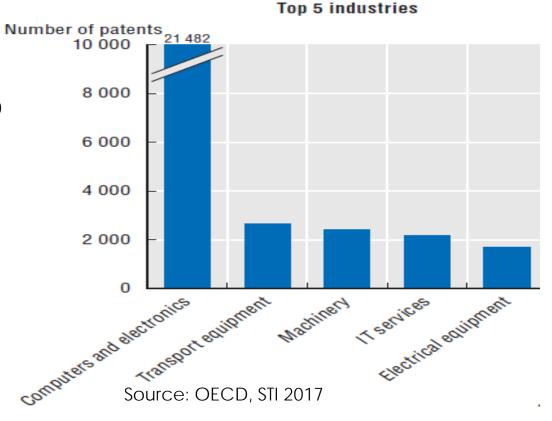
Top corporate R&D investors with IP (12-14)

Artificial Intelligence: concentrated in few

The development of Al-related technologies, as measured by inventions patented in the five top IP offices (IP5), increased by 6% per year on average between 2010 and 2015, twice the average annual growth rate observed for patents in every domain.

The development of AI technologies is concentrated.

Top 2000 corporate R&D investors own 75% of the IP5 patent families related to artificial intelligence (AI).


R&D corporations based in Japan, Korea, Chinese Taipei and China account for about 70% of all Al-related inventions belonging to the world's 2000 top corporate R&D investors and their affiliates, and US-based companies for 18%.

Source: OECD, STI 2017

Artificial intelligence

"Computers and electronics", accounts for 64% of the AI portfolio of top R&D players, but AI patents are also in other sectors: "general-purpose-technology"

Artificial intelligence patents by top 2 000 R&D companies, by sector, 2012-14

Summing up highly concentrated corporate R&D landscape

- R&D expenditures by Scoreboard firms are concentrated in few firms
 - R&D concentration stronger than for Sales and Employment.
- The Scoreboard data do not signal increasing concentration in R&D, on the contrary, the trend is one of slow decline.
 - Nevertheless, this downward trend still leaves high levels of concentration and furthermore seems to have stopped since 2011.
- The Scoreboard data show a strong incumbency advantage:
 - Those few firms that have been able to be a Top10% leading R&D firms throughout the period covered, represent more than half of the corporate R&D worldwide.
 Incumbency is also demonstrated by the high share which leaders in 2005 can still command in 2015 and vice versa.
- The EU is relatively well represented as the home base for persistent R&D leaders, particularly in biopharma and vehicles.

What do we find in digital sectors?

- The distribution of R&D spending among digital Scoreboard firms is indeed highly concentrated, but less than in other high-tech (Pharma).
- The incumbency effect is smaller than in Pharma, there is more turbulence at the top.
- We see no trend of increasing concentration
- But more recently, concentration of R&D spending in the top 1 percent of spenders has risen and turbulence at the top has cooled.
- As the new and young leading R&D firms in digital sectors are all from US and Asia (particularly China), Europe has lost out in terms of top R&D shares.

Implications

The evidence of declining concentration is a positive sign, but its high incumbency characteristic, its slow downward pace and particularly its losing momentum more recently, requires further monitoring and analysis to understand its implications for overall corporate R&D and growth performance;

Especially in digital technologies

Especially in new digital technologies (AI)

With the US, and more recently China, hosting most of the new R&D leaders, especially in digital sectors but also in other sectors, the weaker creative-destruction power of the **EU** corporate R&D system could contribute to a shifting regional R&D pattern to Europe's detriment.

Policy implications

- ► For **innovation policy**, it is important to recognise that overall corporate R&D performance depends on a handful of firms.
 - Understanding the innovation advantages and barriers incumbent leaders and/or new leading firms might enjoy will matter for assessing the power of innovation to generate growth.
- ► For **competition policy**, it is important to understand the impact of a highly concentrated R&D landscape
 - ▶ Are trends therein are associated with leading R&D firms enjoying innovative advantages, how contestable are existing leading positions are, do leading firms use their dominant R&D positions to raise entry barriers against more efficient new innovators, how R&D leaders can turn their R&D weight into market power

Thanks for your attention!

- Reinhilde.Veugelers@kuleuven.be
- https://feb.kuleuven.be/reinhilde.veugelers

- Reinhilde.Veugelers@Bruegel.org
- bruegel.org/author/reinhilde-veugelers/
 - ▶ Veugelers, R., 2018, Are European firms falling behind in the global corporate research race? Bruegel Policy Contribution 18-06, Bruegel, Brussels.