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Abstract

The natural rate of interest, widely known as r∗t , is a key variable used to judge the

stance of monetary policy. We offer a novel euro-area r∗t estimate based on a dynamic

term structure model estimated directly on the prices of bonds with cash flows indexed to

the euro-area harmonized index of consumer prices with adjustments for bond-specific risk

and real term premia. Despite a recent increase, our estimate indicates that the natural

rate in the euro area has fallen about 2 percentage points on net since 2002. We also

devise a related measure of the stance of monetary policy, which suggests that monetary

policy in the euro area was not accommodative at the height of the COVID-19 pandemic.
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1 Introduction

The so-called natural rate of interest, widely known as r∗t , is a key variable in finance and

macroeconomic theory. For investors, the steady-state level of the real short-term interest

rate serves as an anchor for projections of the future discount rates used in valuing assets

(e.g., Clarida 2014). For policymakers and researchers, the natural rate of interest is a policy

lodestar that provides a neutral benchmark to calibrate the stance of monetary policy: Mon-

etary policy is expansionary if the real short-term interest rate lies below the natural rate

and contractionary if it lies above. A good estimate of the natural rate is also necessary to

operationalize popular monetary policy rules such as the Taylor rule. For fiscal policy, the

natural rate of interest is instrumental to assessing the sustainability of public finances in the

long run. More broadly, in the decades prior to the COVID-19 pandemic, the possibility of a

lower new normal for interest rates was at the center of key policy debates about bond market

conundrums, global saving gluts, and secular stagnation.1 More recently, the post-pandemic

spike in interest rates globally has given rise to intense policy debates about whether interest

rates will hold steady at the new higher levels or revert back towards their pre-pandemic

lows.2 In short, the natural rate of interest is a variable of immense importance.

Unfortunately, despite its importance, the natural rate of interest is not directly observ-

able. Instead, it has to be inferred from economic data. In the literature, most estimates of

the natural rate are drawn from macroeconomic models and data, including the widely cited

Laubach and Williams (2003) model. In this paper, we follow Christensen and Rudebusch

(2019, henceforth CR) and use financial models. Specifically, we rely on bond prices denom-

inated in euros and indexed with the harmonized index for consumer prices (HICP) for our

analysis and therefore offer a euro-area perspective on recent trends in the natural rate of

interest.

To further motivate our focus on the euro area, we note that euro-area yield data are

unique in that the European Central Bank (ECB) is a major central bank that has gone

far in exploring the true lower bound for its key policy rate. One relevant policy question

is therefore whether this extreme policy choice has caused the natural rate to be lower in

the euro area than in other advanced economies. Alternatively, the causation could run in

the other direction, namely that the ECB was forced to pursue what might appear to be an

extremely accommodative stance of monetary policy because the natural rate in the euro area

was already really low. We will attempt to provide an answer to this important question,

which is likely to also have major implications for what to expect going forward in the post-

pandemic world.

1See, for example, Greenspan (2005), Bernanke (2005), and Summers (2014, 2015), respectively, on these
three debates.

2See, for example, Blanchard (2023) and Summers (2023).
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The bonds we consider have coupon and principal payments indexed to the HICP (ex

tobacco) and provide compensation to investors for the erosion of purchasing power due to

price inflation in the euro area as a whole.3 Therefore, their prices can be expressed directly

in terms of real yields. The basic premise of our analysis is that the longer-term expectations

embedded in these bond prices reflect financial market participants’ views about the steady

state of the euro-area economy, including its natural rate of interest.

To provide the cleanest possible read on investors’ expectations for the natural rate in the

euro area, we limit our focus to bonds issued by the French government. In principle, we could

have included bonds indexed to HICP (ex tobacco) issued by other euro-area countries such

as Germany, Italy, or Spain,4 but it would complicate the analysis in terms of accounting for

differences in credit and liquidity risks across these different markets and with few apparent

benefits, in particular it would not provide us with a longer sample for our analysis.

The French government first issued bonds indexed to the HICP (ex tobacco), known as

OATe, in October 2001. However, given that we need at least two bonds to be trading,

we start our analysis in October 2002. This long sample allows us to provide a 20-year

perspective on the components that have influenced euro-area real yields in recent decades.

Besides its length, this sample choice offers additional advantages. First, France has deep and

liquid markets for government debt. Second, with maturities of up to 33 years, the OATe

market contains the farthest forward-looking information among all the inflation-indexed

bond markets in the euro area and hence is likely to provide the clearest evidence for the

question at hand. Third, by relying on inflation-indexed bonds, we avoid any issues related

to the effective lower bound that applies to the ECB’s policy rate and other nominal interest

rates. Furthermore, as the underlying factors affecting long-term interest rates are likely

global in nature—such as worldwide demographic shifts or changes in productivity trends—

the euro-area government bond market in general, and the French government bond market

specifically, may well be as informative as any other major sovereign bond market. Finally,

the French government held a AA credit rating from all major rating agencies during our

sample period, which ends in December 2022. Hence, there is a minimum of credit risk to

account for in our French bond price data.

Despite all these advantages the use of inflation-indexed bonds for measuring the natural

rate of interest entails its own empirical challenges. One problem is that inflation-indexed

bond prices include a real term premium. Given the generally upward slope of the OATe yield

curve, the real term premium is presumably usually positive. However, little is known with

certainty about its size or variability. In addition, despite the fairly large notional amount

3HICP is the price index targeted by the ECB for monetary policy purposes, but for historical reasons the
HICP-indexed bonds issued in the euro area reference HICP (ex tobacco); see Ejsing et al. (2007).

4See Christensen et al. (2025) for an analysis of the limited universe of German inflation-linked government
bonds indexed to the HICP (ex tobacco).
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of outstanding OATes, these securities face unique market risks due to high demand from

institutional investors such as pension funds and life insurance companies.5

To estimate the natural rate of interest in the presence of market risk and real term premia,

we use an arbitrage-free dynamic term structure model of real yields augmented with a bond-

specific risk factor. The identification of the bond-specific risk factor comes from its unique

loading for each individual bond security as in Andreasen et al. (2021, henceforth ACR).

Our analysis uses prices of individual bonds rather than the more usual input of yields from

fitted synthetic curves. The underlying mechanism assumes that, over time, an increasing

proportion of the outstanding inventory is locked up in buy-and-hold investors’ portfolios.

Given forward-looking investor behavior, this lock-up effect means that a particular bond’s

sensitivity to the market-wide bond-specific risk factor will vary depending on how seasoned

the bond is and how close to maturity it is. In a careful study of nominal U.S. Treasuries,

Fontaine and Garcia (2012) find a pervasive bond-specific factor that affects all bond prices,

with loadings that vary with the maturity and age of each bond. By observing a cross section

of bond prices over time—each with a different time-since-issuance and time-to-maturity—

we can identify the overall bond-specific risk factor and each bond’s loading on that factor.

This technique is particularly useful for analyzing inflation-indexed debt when only a limited

sample of bonds may be available, for example early in our sample.6

The theoretical arbitrage-free formulation of the model also provides identification of a

time-varying real term premium in the pricing of OATes. Identifying the bond-specific risk

premium and real term premium allows us to estimate the underlying frictionless real rate

term structure and the natural rate of interest, which we measure as the average expected

real short rate over a five-year period starting five years ahead—consistent with the longer-

run perspective emphasized by Laubach and Williams (2016). Our preferred estimate of the

natural rate of interest, r∗t , is shown in Figure 1 along with ten-year nominal and real yields.7

Both nominal and real long-term yields in the euro area trended down together during the

2002-2021 period, and this concurrence suggests little net change in inflation expectations

or the inflation risk premium during that 20-year period. The estimated natural rate fell

from above 1.5 percent to below -1.5 percent by the end of 2021, before retracing some of

that decline during 2022. Accordingly, our results show that more than 75 percent of the

4-percentage-point decline in longer-term yields by the end of 2021 represents a reduction

in the natural rate of interest. Our model estimates also indicate that about 75 percent of

5OATes also provide protection against net deflation over the life of each bond. However, the value of this
protection is likely to be low and is therefore not considered; see Christensen and Mouabbi (2023).

6Finlay and Wende (2012) examine prices from a limited number of Australian inflation-indexed bonds but
do not account for bond-specific liquidity or convenience premia.

7These yields are constructed using a model of French standard nominal government bonds, known as
OATs, and a separate model of French OATe prices, each estimated directly on the observed bond prices as
advocated by Andreasen et al. (2019).
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Figure 1: Long-Term Nominal and Real Yields and an Estimate of r∗

Ten-year nominal and real yields and our preferred AFNS-R model estimate of the equilibrium real

short rate, r∗t , i.e., the 5- to 10-year risk-neutral real rate.

the interest rate increases the last year of our sample reflect increases in the natural rate

of interest. However, model projections suggest that the natural rate of interest is likely to

revert only very gradually towards its old mean in the years ahead. Thus, policy rates in the

euro area may return to levels close to the effective lower bound during economic downturns

once the economy moves past the recent spell of high inflation. Finally, to evaluate the model

more fully, we note that we perform our analysis using daily data. This could also be used

to examine the impact of specific ECB policy announcements relying on established high-

frequency event-study technology for identification, as in Christensen and Rudebusch (2012),

but we leave that venue for future research.

As a separate contribution and to demonstrate the applicability of our model for economic

analysis, we use it to devise market-based measures of the stance of monetary policy in the

euro area. This is achieved by deducting our r∗t estimate from observed measures of one-year

real yields. We consider the latter to be a reasonable proxy for the theoretically ideal, but

unobserved, instantaneous real short rate rt appearing in textbook formulas of the stance of

monetary policy measured as the gap between the current real short-term interest rate and

its natural level. The results indicate that it took significant time for monetary policy in the

euro area to reach an accommodative stance during both the Global Financial Crisis (GFC)

and the COVID-19 pandemic.

We further validate our estimate of the stance of monetary policy by comparing it with
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a text-based measure introduced by Hubert and Portier (2024), who use machine learning to

analyze the statement and transcript of the press conference following each ECB governing

council meeting. Although similar most of the time, the market- and text-based measures

of the policy stance deviate during three key periods, namely the European Sovereign Debt

Crisis, the COVID-19 pandemic, and the post-pandemic economic reopening characterized

by highly elevated inflation. During the first and last of these three episodes, text-based

analysis points to a hawkish posture among policymakers, while our market-based measure

suggests that monetary policy was in fact quite accommodative. In contrast, policymakers

clearly tried to achieve an accommodative stance for policy through their communications

in response to the COVID-19 pandemic. However, our market-based measure suggests that

policy did not become accommodative until into 2021. Thus, our results underscore the

challenges of central bank communication during times of crisis. At the same time, though,

our market-based measure of the stance of monetary policy offers a way to examine in real

time to what extent investors’ and financial market participants’ perceptions about the stance

of monetary policy is aligned with the one communicated by policymakers. Hence, we see

our measure as a potentially important policy tool going forward, but we leave it for future

research to examine its usefulness for this purpose.

Our analysis focuses on a real term structure model that only includes the prices of

inflation-indexed bonds. This methodology contrasts with previous term structure research

in two ways. First, previous term structure models are almost universally estimated not on

observed bond prices but on synthetic zero-coupon yields obtained from fitted yield curves.

Fontaine and Garcia (2012) argue that the use of such synthetic yields can erase useful

information on bond-specific price effects, and they provide a rare exception of the estimation

of a term structure model with bond prices. More generally, the use of interpolated yield

curves in term structure analysis can introduce arbitrary and unnecessary measurement error.8

A second difference is that past analysis of inflation-indexed bonds has jointly modeled both

the real and nominal yield curves, e.g., Christensen et al. (2010), Abrahams et al. (2016), and

D’Amico et al. (2018) for the United States and Joyce et al. (2010) and Carriero et al. (2018)

for the United Kingdom. Such joint specifications can also be used to estimate the steady-

state real rate—though this earlier work has emphasized only the measurement of inflation

expectations and risk premia.9 Relative to our procedure of using just inflation-indexed

bonds to estimate the natural rate, including both real and nominal yields has the advantage

of being able to estimate a model on a much larger sample of bond yields. However, a joint

8Dai et al. (2004) found notable differences in empirical results across four different yield curve interpolation
schemes. For further discussion of these issues; see Andreasen et al. (2019).

9Joyce et al. (2012) use dynamic term structure models of U.K. index-linked government bond yields to
study long-term real rate expectations while accounting for real term premia though not bond-specific risk or
liquidity premia.
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specification also requires additional modeling structure—including specifying more pricing

factors, an inflation risk premium, and inflation expectations. The greater number of modeling

elements—along with the requirement that this more elaborate structure remains stable over

the sample—raises the risk of model misspecification, which can contaminate estimates of the

natural rate and model inference more generally. In particular, if the inflation components

are misspecified, the whole dynamic system may be compromised, a valid concern in the

recent high-inflation environment. Furthermore, during the 2009-2021 period when the ECB

kept its policy rate close to its effective lower bound, the dynamic interactions of short- and

medium-term nominal yields were likely affected. Such a constraint is very difficult to include

in an empirical term structure model of nominal yields (see Swanson and Williams 2014 and

Christensen and Rudebusch 2015 for discussions). By relying solely on real yields, which are

not subject to a lower bound, we avoid this complication altogether.

The analysis in this paper relates to several important literatures. Most directly, it speaks

to the burgeoning literature on measurement of the natural rate of interest. Second, our

estimates of the real yield curve that would prevail without trading frictions have implications

for asset pricing analysis on the true slope of the real yield curve. Furthermore, our results

relate to research on financial market liquidity and convenience premia. Finally, the paper

contributes to the rapidly growing literature on the economic consequences of the COVID-19

pandemic.

The remainder of the paper is organized as follows. Section 2 contains a description of the

French OATe bond data, while Section 3 details the no-arbitrage term structure models we

use and presents the empirical results. Section 4 describes the estimated real bond-specific

premia, while Section 5 analyzes our OATe-based estimate of the natural rate and compares

it with other measures. Finally, Section 6 introduces our market-based measure of the stance

of the ECB’s monetary policy before Section 7 concludes.

2 The French OATe Bond Data

This section briefly describes the available data downloaded from Bloomberg for the market for

French inflation-indexed bonds referencing the harmonized index for consumer prices (HICP)

(ex tobacco) and known as OATes.

To give a sense of the size of the French government bond market, we note up front that,

as of the end of December 2022, the total outstanding notional amount of marketable bonds

issued by the French government was e2,28 trillion. In terms of medium- and long-term debt,

the outstanding notional amount was e2,13 trillion of which e262 billion, or 12.3 percent,

represented inflation-indexed securities, and out of this amount OATes represented e183.7
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Figure 2: Overview of the French OATe Bond Data

Panel (a) reports the number of outstanding OATe bonds at a given point in time. Panel (b) shows the

maturity distribution of all French OATe bonds issued since October 2001. The solid gray rectangle

indicates the sample used in our analysis, where the sample is restricted to start on October 31, 2002,

and limited to bond prices with more than one year to maturity after issuance.

billion, or 70.1 percent.10 Despite the large size of the French government bond market, the

French government still held a AA rating from all major rating agencies during our sample

period. As a consequence, there is essentially no credit risk to account for in our bond price

data, as also suggested by measures of the credit risk premia of French government bond

examined in Section 2.1.

The French government issued its first inflation-indexed bond referencing HICP on Octo-

ber 31, 2001. At the end of December 2022, the outstanding amount of French OATes was

e184 billion as already noted. Thus, this is a large market in a European context. The total

number of such bonds outstanding over time in our sample is shown as a solid gray line in

Figure 2(a). At the end of our sample, 12 French OATes were outstanding. However, as

noted by Gürkaynak et al. (2010) and ACR, prices of inflation-indexed bonds near their ma-

turity tend to be somewhat erratic because of the indexation lag in their payouts. Therefore,

to facilitate model estimation, we censor the prices of OATes from our sample when they

have less than one year to maturity. Using this cutoff, the number of OATes in the sample

is modestly reduced, as shown with a solid black line in Figure 2(a).

Figure 2(b) shows the distribution of the available universe of French OATes, where we

note that a repeated, although somewhat infrequent, issuance of ten-, fifteen-, and thirty-year

10This information is available at
https://www.aft.gouv.fr/files/medias-aft/7 Publications/7.2 BM/392 Monthly%20bulletin%20january%202023.pdf
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No. Issuance Total uplifted
OATe bond

obs. Date amount amount

(1) 3% 7/25/2012 2,278 10/31/2001 787 14,494
(2) 3.15% 7/25/2032 5,258 10/31/2002 587 12,098
(3) 2.25% 7/25/2020 4,045 1/22/2004 298 20,310
(4) 1.6% 7/25/2015 2,522 11/23/2004 3,527 14,052
(5) 1.25% 7/25/2010 849 4/25/2006 3,634 9,325
(6) 1.8% 7/25/2040 4,119 3/14/2007 347 12,929
(7) 1.1% 7/25/2022 2,910 5/25/2010 2,883 19,928
(8) 1.85% 7/25/2027 3,094 2/16/2011 418 23,433
(9) 0.25% 7/25/2018 1,370 2/16/2011 2,520 11,257
(10) 0.25% 7/25/2024 2,566 2/26/2013 2,320 14,644
(11) 0.7% 7/25/2030 2,225 6/18/2014 429 17,232
(12) 0.1% 3/1/2021 1,029 3/21/2016 2,290 7,566
(13) 0.1% 7/25/2047 1,629 10/5/2016 556 13,027
(14) 0.1% 7/25/2036 1,233 4/6/2018 416 12,747
(15) 0.1% 3/1/2029 984 3/21/2019 2,128 17,772
(16) 0.1% 3/1/2026 660 6/18/2020 3,044 12,736
(17) 0.1% 7/25/2031 505 1/24/2021 2,370 11,741
(18) 0.1% 7/25/2053 239 2/1/2022 217 6,447
(19) 0.1% 7/25/2038 153 6/1/2022 549 7,089

Table 1: Sample of French OATe Bonds

The table reports the characteristics, first issuance date and amount, and total amount issued in

millions of euros either at maturity or as of December 31, 2022, for the sample of French OATe

bonds. Also reported are the number of daily observation dates for each bond during the sample

period from October 31, 2002, to December 31, 2022.

OATes implies that there is a fairly wide range of available maturities in the data going back

to the start of our sample in October 2002. It is this cross-sectional dispersion that provides

the econometric identification of the factors in our models, including the inflation-indexed

bond-specific risk factor. Finally, Table 1 contains the contractual details of all 19 French

OATes in our data as well as the number of daily observations for each in our sample.

Figure 3 shows the yields to maturity for all French OATe bonds in our sample at daily

frequency from October 31, 2002, to December 30, 2022. Note the following regarding these

yield series. First, the significant persistent decline in real yields over this 20-year period is

clearly visible. Long-term real yields in the euro area were close to 3 percent in late 2002 and

had dropped below -1 percent by late 2021 before retracing some of that decline during 2022.

The empirical question we are interested in is to what extent these persistent fluctuations

represent changes in the natural rate or are driven by other factors such as term or other

bond-specific risk premia. Second, business cycle variation in the shape of the yield curve

is pronounced around the lower trend. The yield curve tends to flatten ahead of recessions

and steepen during the initial phase of economic recoveries. These characteristics are the
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Figure 3: Yield to Maturity of French OATe Bonds

practical motivation behind our choice of using a three-factor model for the frictionless part

of the euro-area real yield curve, adopting an approach similar to what is standard for U.S.

and U.K. nominal yield data; see Christensen and Rudebusch (2012).

Figure 4 shows the inflation index ratios for all 19 French OATes in our sample. We

note that none of the bonds have been exposed to any prolonged period of deflation, defined

as periods with inflation index ratios below one. Indeed, thanks to the generally positive

inflation environment in the euro area, the ratios tend to relatively quickly become signifi-

cantly positive. This suggests that their offered deflation protection is likely to be of modest

value, similar to what Christensen and Mouabbi (2023, henceforth CM) find for French gov-

ernment bonds indexed using the French CPI and known as OATi’s. We therefore disregard

this component in our analysis and leave it for future research to assess its value.

2.1 The Credit Risk of French Government Bonds

In this section, we assess whether there are any material credit risk issues to consider in

modeling French OATe bond prices.

First, we examine rates on so-called credit default swap (CDS) contracts. They reflect

the annual rate investors are willing to pay to buy protection against default-related losses

on these bonds over a fixed period of time stipulated in the contract. Such derivatives have

been used to price the credit risk of many countries, including France, since the early 2000s.

In Figure 5, we plot the available series downloaded from Bloomberg for the five-year
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Figure 4: Inflation Index Ratios of French OATe Bonds

French CDS rate shown with a solid blue line. In addition to occasionally missing values, the

five-year CDS rate is missing entirely between September 24, 2018, and March 11, 2020. As

a consequence of the missing data, we consider an alternative measure of the credit risk of

French government bonds. Specifically, we include the five-year forward yield spread between

French and German inflation-indexed bond yields for a period starting five years ahead. Due

to the late launch of the German inflation-indexed government bond program, we can only

construct the 5yr5yr Franco-German real yield spread starting June 12, 2009, when the third

such German bond was issued; see Christensen et al. (2025) for details. The available series

since then through the end of our sample is shown with a solid grey line in Figure 5. Similar to

regular German bunds, German inflation-indexed government bonds trade at a convenience

premium as documented by Christensen et al. (2025). However, given their lower liquidity, we

refer to these premia as safety premia; see Christensen and Mirkov (2022). For the same reason

we interpret the 5yr5yr Franco-German real yield spread as mainly reflecting differences in

credit risk premia rather than differences in liquidity risk premia.

In light of the incomplete sample histories for both credit risk measures, we construct

a composite measure of the credit risk of French government bonds by averaging the two

measures. To further smooth out idiosyncratic noise, we calculate the four-week moving

average of this composite series, which is shown with a solid black line in Figure 5. This

series is available daily from April 1, 2003, to December 30, 2022, and we take it to be a

representative proxy for the credit risk premium of French government bonds.
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Figure 5: Measures of the Credit Risk of French Government Bonds

We note that, beyond being elevated around the European sovereign debt crisis in the

2010-2013 period, our composite measure of credit risk has remained fairly stable fluctuating

around 50 basis points. Thus, the main takeaway for our analysis is that changes in credit risk

premia cannot account for the persistent trends in the OATe bond yields during our sample

period. Furthermore and importantly, if anything, given the modest positive net change in the

composite credit risk measure from April 2003 to December 2022, the credit risk component

should have pushed up French real yields. Instead, French real yields of all maturities have

experienced a persistent significant net decline since 2003. Thus, we feel that we can rule

out with great confidence credit risk components as an important driver of French real yields

during our sample period.

2.2 Bid-Ask Spreads of OATe Bonds

In this section, to shed light on the trading frictions in the market for French OATe bonds,

we examine their bid-ask spreads.

To begin, we note that reliable bid-ask spreads for individual OATe bonds are available

from Bloomberg starting in 2011.11 In Figure 6, we show the smallest and largest observed

bid-ask spread for each observation date as well as the median bid-ask spread. Although

elevated during the European sovereign debt crisis in 2011 and the first half of 2012, the

median bid-ask spread since then has followed a stable and declining trend that has left it

close to 1 basis point by the end of our sample. This points to high, and even improving,

liquidity in the market for OATes during the last decade of our sample. That said, we still

11Speck (2021) reports bid-ask spreads for French inflation-indexed bonds back to 2006, but his data comes
form a different source.
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Figure 6: Bid-Ask Spreads of OATe Bonds

want to account for any bond-specific effects tied to liquidity in our analysis, in particular in

light of the fact that there is one or more OATes that face challenging trading conditions

on an on-going basis as evidenced by the elevated maximum bid-ask spreads observed for

extended periods in Figure 6.

A key purpose of the remainder of the paper is to quantify the importance of these bond-

specific risk premia in the pricing of OATe bonds and what adjustments for them may imply

about bond investors’ underlying real short-rate expectations and associated real term premia.

3 Model Estimation and Results

In this section, we first describe how we model yields in a world without any frictions to

trading. This model of frictionless dynamics is fundamental to our analysis. We then detail the

augmented model that accounts for the bond-specific premia in inflation-indexed yields. This

is followed by a description of the restrictions imposed to achieve econometric identification

of this model and its estimation. We end the section with a brief summary of our estimation

results.

3.1 A Frictionless Arbitrage-Free Model of Real Yields

To capture the fundamental or frictionless factors operating the OATe real yield curve, we

choose to focus on the tractable affine dynamic term structure model introduced in Chris-

tensen et al. (2011).12

12Although the model is not formulated using the canonical form of affine term structure models introduced
by Dai and Singleton (2000), it can be viewed as a restricted version of the canonical Gaussian model; see
Christensen et al. (2011) for details.
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In this arbitrage-free Nelson-Siegel (AFNS) model, the state vector is denoted by Xt =

(Lt, St, Ct), where Lt is a level factor, St is a slope factor, and Ct is a curvature factor. The

instantaneous risk-free real rate is defined as

rt = Lt + St. (1)

The risk-neutral (or Q-) dynamics of the state variables are given by the stochastic differential

equations13 


dLt

dSt

dCt


 =




0 0 0

0 −λ λ

0 0 −λ







Lt

St

Ct


 dt+Σ




dW
L,Q
t

dW
S,Q
t

dW
C,Q
t


 , (2)

where Σ is the constant covariance (or volatility) matrix that is assumed to be diagonal, as

recommended by Christensen et al. (2011).14 Based on this specification of the Q-dynamics,

real zero-coupon bond yields preserve the Nelson-Siegel factor loading structure as

yt(τ) = Lt +

(
1− e−λτ

λτ

)
St +

(
1− e−λτ

λτ
− e−λτ

)
Ct −

A(τ)

τ
, (3)

where A(τ) is a convexity term that adjusts the functional form in Nelson and Siegel (1987)

to ensure absence of arbitrage (see Christensen et al. (2011)).

To complete the description of the model and to implement it empirically, we will need

to specify the risk premia that connect these factor dynamics under the Q-measure to the

dynamics under the real-world (or physical) P-measure. It is important to note that there

are no restrictions on the dynamic drift components under the empirical P-measure beyond

the requirement of constant volatility. To facilitate empirical implementation, we use the

essentially affine risk premium specification introduced in Duffee (2002). In the Gaussian

framework, this specification implies that the risk premia Γt depend on the state variables;

that is,

Γt = γ0 + γ1Xt,

where γ0 ∈ R3 and γ1 ∈ R3×3 contain unrestricted parameters.

Thus, the resulting unrestricted three-factor AFNS model has P-dynamics given by




dLt

dSt

dCt


 =




κP11 κP12 κP13

κP21 κP22 κP23

κP31 κP32 κP33










θP1

θP2

θP3


−




Lt

St

Ct





 dt+Σ




dW
L,P
t

dW
S,P
t

dW
C,P
t


 .

13As discussed in Christensen et al. (2011), with a unit root in the level factor, the model is not arbitrage-
free with an unbounded horizon; therefore, as is often done in theoretical discussions, we impose an arbitrary
maximum horizon.

14As per Christensen et al. (2011), θQ is set to zero without loss of generality.
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This is the transition equation in the Kalman filter estimation.

3.2 An Arbitrage-Free Model of Real Yields with Bond-Specific Risk

In this section, we augment the frictionless AFNS model introduced above to account for any

bond-specific risk premia embedded in the OATe prices. To do so, let Xt = (Lt, St, Ct,X
R
t )

denote the state vector of the four-factor AFNS-R model with bond-specific risk premium

adjustment. As in the non-augmented model, we let the frictionless instantaneous real risk-

free rate be defined by equation (1), while the risk-neutral dynamics of the state variables

used for pricing are given by




dLt

dSt

dCt

dXR
t




=




0 0 0 0

0 λ −λ 0

0 0 λ 0

0 0 0 κQR










0

0

0

θQR




−




Lt

St

Ct

XR
t






dt+Σ




dW
L,Q
t

dW
S,Q
t

dW
C,Q
t

dW
R,Q
t




,

where Σ continues to be a diagonal matrix.

In the augmented model, OATe yields are sensitive to bond-specific risks because the net

present value of their future cash flow is calculated using the following discount function:

ri(t, ti0) = rt + βi(1− e−λR,i(t−ti
0
))XR

t = Lt + St + βi(1− e−λR,i(t−ti
0
))XR

t . (4)

CR show that the net present value of one unit of consumption paid by OATe i at time t+ τ

has the following exponential-affine form

Pt(t
i
0, τ) = EQ

[
e−

∫ t+τ

t
ri(s,ti

0
)ds

]

= exp
(
B1(τ)Lt +B2(τ)St +B3(τ)Ct +B4(t, t

i
0, τ)X

R
t +A(t, ti0, τ)

)
.

This result implies that the model belongs to the class of Gaussian affine term structure

models. Note also that, by fixing βi = 0 for all i, we recover the AFNS model.

Now, consider the whole value of OATe i issued at time ti0 with maturity at t+ τ i that

pays an annual coupon Ci. Its price is given by15

P t(t
i
0, τ

i, Ci) = Ci(t1 − t)EQ
[
e−

∫ t1
t ri(s,ti0)ds

]
+

N∑

j=2

CiEQ
[
e−

∫ tj
t ri(s,ti0)ds

]

+EQ
[
e−

∫ t+τi

t
ri(s,ti

0
)ds

]
.

15This is the clean price that does not account for any accrued interest and maps to our observed bond
prices.
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There are only two minor omissions in this bond pricing formula. First, it does not

account for the lag in the inflation indexation of the OATe bond payoff. The potential error

from this omission should be modest (see Grishchenko and Huang 2013), especially as we

exclude bonds from our sample when they have less than one year of maturity remaining.

Second, we do not account for the value of deflation protection offered by OATes, as already

noted. However, CM find these values to be very small for French OATi bonds indexed to

the French consumer price index, and, given that HICP inflation has run quite a bit above

French CPI inflation during our sample, the value of this protection for OATe bonds is likely

to be entirely negligible.

Finally, to complete the description of the AFNS-R model, we again specify an essentially

affine risk premium structure, which implies that the risk premia Γt take the form

Γt = γ0 + γ1Xt,

where γ0 ∈ R4 and γ1 ∈ R4×4 contain unrestricted parameters. Thus, the resulting unre-

stricted four-factor AFNS-R model has P-dynamics given by




dLt

dSt

dCt

dXR
t




=




κP11 κP12 κP13 κP14

κP21 κP22 κP23 κP24

κP31 κP32 κP33 κP34

κP41 κP42 κP43 κP44










θP1

θP2

θP3

θP4




−




Lt

St

Ct

XR
t







dt+Σ




dW
L,P
t

dW
S,P
t

dW
C,P
t

dW
R,P
t




.

This is the transition equation in the Kalman filter estimation.

3.3 Model Estimation and Econometric Identification

Due to the nonlinear relationship between the state variables and the bond prices, the model

cannot be estimated with the standard Kalman filter. Instead, we use the extended Kalman

filter as in Kim and Singleton (2012); see CR for details. Furthermore, to make the fitted

errors comparable across bonds of various maturities, we scale each bond price by its duration.

Thus, the measurement equation for the bond prices takes the following form

P i
t (t

i
0, τ

i)

Di
t(t

i
0, τ

i)
=

P̂ i
t (t

i
0, τ

i)

Di
t(t

i
0, τ

i)
+ εit,

where P̂ i
t (t

i
0, τ

i) is the model-implied price of bond i and Di
t(t

i
0, τ

i) is its duration, which

is calculated before estimation. See Andreasen et al. (2019) for evidence supporting this

formulation of the measurement equation.

Furthermore, since the bond-specific risk factor is a latent factor that we do not observe,

its level is not identified without additional restrictions. As a consequence, we let the second
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OATe bond, which was issued right at the start of our sample, have a unit loading on this

factor, that is, the 30-year OATe bond issued on October 31, 2002, and maturing on July

25, 2032, with 3.15 percent coupon has βi = 1. This choice implies that the βi sensitivity

parameters measure bond-specific risk sensitivity relative to that of the 30-year 2032 OATe

bond.

Finally, we note that the λR,i parameters can be hard to identify if their values are too

large or too small. As a consequence, we follow ACR and impose the restriction that they fall

within the range from 0.0001 to 10, which is without practical consequences, as demonstrated

by CM. Also, for numerical stability during model optimization, we impose the restriction

that the βi parameters fall within the range from 0 to 250, which turns out to be a binding

constraint for two of the 19 bonds in our sample, but it is again the case that these two

constraints are without practical consequences.

3.4 Estimation Results

This section presents our benchmark estimation results. In the interest of simplicity, in this

section we focus on a version of the AFNS-R model where KP and Σ are diagonal matrices.

As shown in ACR, these restrictions have hardly any effects on the estimated bond-specific

risk premium for each inflation-indexed bond, because it is identified from the model’s Q-

dynamics, which are independent of KP and only display a weak link to Σ through the small

convexity adjustment in the bond yields. Furthermore, we stress that we relax this assumption

in Section 5 when we analyze estimates of r∗t , which are indeed sensitive to the specification

of the models’ P-dynamics.

Table 2 reports the summary statistics for the fitted errors of individual OATes as well

as for all OATes combined. With the single exception of OATe number 4 in our sample,

there is otherwise uniform improvement in model fit from incorporating the bond-specific

risk factor into the AFNS model. Still, it is worth noting that the AFNS model is able to

deliver a root mean-squared fitted error of 5.6 basis points across all bonds combined, which

in general could be characterized as a satisfactory fit, but obviously not as good as the RMSE

of 4.3 basis points for all bonds combined achieved by the AFNS-R model, which represents a

really good fit to the entire cross section of yields. Note also that neither the 15- nor 30-year

bonds pose any particular challenges for the two models. Thus, both the AFNS and AFNS-R

models are clearly able to fit those long-term bond yields to a satisfactory level of accuracy.

Table 3 contains the estimated dynamic parameters. Note that the dynamics of the first

three factors are qualitatively very similar across the two estimations. Hence, the frictionless

dynamics of the state variables within the AFNS-R model are essentially statistically indis-

tinguishable from the corresponding dynamics in the simpler AFNS model. We take this as

a sign of the robustness of our results. Furthermore, λ is smaller in the AFNS-R model.
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Pricing errors Estimated parameters
OATe bond AFNS AFNS-R AFNS-R

Mean RMSE Mean RMSE βi SE λR,i SE
(1) 3% 7/25/2012 0.32 4.29 0.55 3.00 249.9962 1.3687 0.0022 0.0001
(2) 3.15% 7/25/2032 1.09 4.24 0.85 2.62 1 n.a. 9.9999 1.3562
(3) 2.25% 7/25/2020 -0.88 4.81 0.58 2.90 45.4290 1.2766 0.0024 0.0001
(4) 1.6% 7/25/2015 -4.88 9.16 -5.75 12.86 58.6938 0.8397 0.7940 0.0444
(5) 1.25% 7/25/2010 1.14 4.33 0.94 2.59 0.5500 0.1740 9.9941 1.3542
(6) 1.8% 7/25/2040 -1.19 4.70 0.72 2.81 0.9419 0.0669 9.9945 1.3535
(7) 1.1% 7/25/2022 -0.94 4.23 -0.58 3.13 2.9259 0.3679 0.1050 0.0222
(8) 1.85% 7/25/2027 2.10 4.23 1.53 2.91 0.8847 0.0254 10.0000 1.3522
(9) 0.25% 7/25/2018 -2.19 4.99 0.45 2.06 4.6753 0.1780 1.9798 0.6843
(10) 0.25% 7/25/2024 0.26 5.24 0.65 2.59 1.4392 0.0439 9.2613 1.3507
(11) 0.7% 7/25/2030 -1.76 4.73 -0.16 2.28 3.7724 1.0018 0.0481 0.0155
(12) 0.1% 3/1/2021 8.07 9.44 2.17 3.45 1.2439 0.0401 1.0239 0.1341
(13) 0.1% 7/25/2047 3.11 5.01 0.11 2.17 249.9910 1.3611 0.0028 0.0001
(14) 0.1% 7/25/2036 -0.30 2.98 0.31 2.14 1.0284 0.0538 10.0000 1.3318
(15) 0.1% 3/1/2029 2.65 3.65 1.32 2.48 143.6258 1.3572 0.0014 0.0000
(16) 0.1% 3/1/2026 14.87 16.24 1.30 3.25 35.0249 1.3548 0.0100 0.0006
(17) 0.1% 7/25/2031 -4.07 7.19 0.47 2.14 1.8264 0.1884 0.6665 0.1139
(18) 0.1% 7/25/2053 1.98 7.38 0.41 3.89 29.8711 1.3287 0.2621 0.0169
(19) 0.1% 7/25/2038 3.39 4.95 0.04 2.99 1.3281 0.0781 9.9998 1.1221
All yields 0.23 5.61 0.20 4.25 - - - -
Max LEKF 217,238.6 234,570.8 - -

Table 2: Pricing Errors and Estimated Bond-Specific Risk Parameters

This table reports the mean pricing errors (Mean) and the root mean-squared pricing errors (RMSE)

of French OATe bonds in the AFNS and AFNS-R models estimated with a diagonal specification of

KP and Σ. The errors are computed as the difference between the French OATe bonds market price

expressed as yield to maturity and the corresponding model-implied yield. All errors are reported in

basis points. Standard errors (SE) are not available (n.a.) for the normalized value of β2.

This implies that the yield loadings of the slope factor decays toward zero more slowly as the

maturity increases. At the same time, the peak of the curvature yield loadings is located at

a later maturity compared with its loading in the AFNS model. As a consequence, slope and

curvature matter more for longer-term yields in the AFNS-R model. This helps explain part

of the better fit to the entire cross section of bonds within that model.

The estimated paths of the level, slope, and curvature factors from the two models are

shown in Figure 7. While the two models’ slope factors are close to each other most of the

time, their level factors have a wedge between them. However, they generally move in tandem,

as both exhibit a persistent decline from 2002 through the end of 2021 that is partially offset

by a sharp reversal during the last year of our sample. The lower path of the level factor in the

AFNS model is offset by a mostly higher path of the curvature factor in that model compared

to the AFNS-R model. Accordingly, the main impact of accounting for bond-specific risk

premia in the pricing of the OATes is on the level and curvature factors of the frictionless
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AFNS AFNS-R
Parameter

Est. SE Est. SE

κP11 0.0194 0.0473 0.0441 0.0767
κP22 0.3754 0.2020 0.2522 0.1952
κP33 0.4188 0.2578 0.4964 0.2697
κP44 - - 0.0876 0.1432
σ11 0.0036 0.0000 0.0054 0.0000
σ22 0.0129 0.0002 0.0117 0.0002
σ33 0.0183 0.0003 0.0184 0.0003
σ44 - - 0.0189 0.0025
θP1 0.0340 0.0322 0.0383 0.0248
θP2 -0.0235 0.0120 -0.0211 0.0156
θP3 -0.0096 0.0139 -0.0209 0.0126
θP4 - - -0.0290 0.0426
λ 0.3860 0.0012 0.3245 0.0013

κQR - - 7.5059 0.9816

θQR - - 0.0002 0.0000
σy 0.0006 7.4× 10−7 0.0003 1.14 × 10−6

Table 3: Estimated Dynamic Parameters

The table shows the estimated dynamic parameters for the AFNS and AFNS-R models estimated with

a diagonal specification of KP and Σ.

real yield curve. As we demonstrate later, this affects the models’ longer-run projections of

real rates and hence the estimates of the natural rate. The fourth factor in the AFNS-R model,

the bond-specific risk factor, is shown in Figure 7(d). It follows a persistent process with a

very stable path near zero for the first 15 years before it experiences a pronounced downward

trend during the last 7 years of the sample that leaves it with a significantly negative value

at the end of our sample.

4 The OATe Bond-Specific Risk Premium

In this section, we analyze the French OATe bond-specific risk premia implied by the es-

timated AFNS-R model described in the previous section. First, we formally define the

bond-specific risk premium and study its historical evolution. We then briefly assess its ro-

bustness, including its sensitivity to the high-frequency daily data we use. We end the section

with an examination of the determinants of the average estimated bond-specific risk premium

using regression analysis.
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Figure 7: Estimated State Variables

Illustration of the estimated state variables from the AFNS and AFNS-R models.

4.1 The Estimated OATe Bond-Specific Risk Premia

We now use the estimated AFNS-R model to extract the bond-specific risk premia in the

OATe market. To compute these premia, we first use the estimated parameters and the

filtered states
{
Xt|t

}T

t=1
to calculate the fitted OATe prices

{
P̂ i
t

}T

t=1
for all outstanding

OATe securities in our sample. These bond prices are then converted into yields to maturity
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{
ŷ
c,i
t

}T

t=1
by solving the fixed-point problem

P̂ i
t = C(t1 − t) exp

{
−(t1 − t)ŷc,it

}
+

n∑

k=2

C exp
{
−(tk − t)ŷc,it

}
(5)

+ exp
{
−(T − t)ŷc,it

}
,

for i = 1, 2, ..., nOATe, meaning that
{
ŷ
c,i
t

}T

t=1
is approximately the real rate of return on the

ith OATe if held until maturity (see Sack and Elsasser 2004). To obtain the corresponding

yields with correction for the bond-specific risk premia, we compute a new set of model-

implied bond prices from the estimated AFNS-R model using only its frictionless part, i.e.,

using the constraints that XR
t|t = 0 for all t as well as σ44 = 0 and θ

Q
R = 0. These prices

are denoted
{
P̃ i
t

}T

t=1
and converted into yields to maturity ỹ

c,i
t using equation (5). They

represent estimates of the prices that would prevail in a world without any financial frictions

or special demands for certain bonds. The bond-specific risk premium for the ith OATe is

then defined as

Ψi
t ≡ ŷ

c,i
t − ỹ

c,i
t . (6)

Figure 8 shows the average estimated OATe bond-specific risk premium Ψ̄t across the

outstanding OATes at each point in time. Note that a negative value means that the fitted

OATe price is above the model-implied frictionless price, i.e., OATe prices are higher than

they should be in a world without any frictions. Importantly, though, the mean of the series

is -0.56 basis point, that is, less than 0.0001 in absolute size. Thus, on average, OATe prices

are not biased by bond-specific risk premia unlike French OATi’s, whose prices contain a large

convenience premium as documented by CM. That said, there are clearly still some trends

and time variation in the series, which explains the standard variation of 9.46 basis points.

Furthermore, toward the end of our sample, the average bond-specific premium dropped

significantly into negative territory, reaching a historic low of -41.94 basis points on August

31, 2022. Hence, at that point in time, the average OATe bond was trading at a significant

price or convenience premium. When HICP inflation spiked sharply in 2022, one implication

was that bonds like OATes, whose principal and cash flows adjust with the changes in the

HICP, became very desirable and convenient assets to hold—so much so that investors were

willing to give up 0.42 percent in annual return, or equivalently overpay a corresponding

amount, to hold these securities. In contrast, it reached its maximum of 37.25 basis points

in late 2007, coinciding with a few single-day large spikes. Notably, a large positive premium

here means that the average OATe was trading at a liquidity discount, or at low prices. This

is the typical pattern in fixed-income markets when investors are concerned about liquidity

and their ability to sell a bond back to the market, and such spells of illiquidity tend to be
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Figure 8: Average Estimated OATe Bond-Specific Risk Premium

Illustration of the average estimated bond-specific risk premium of French OATes for each observation

date implied by the AFNS-R model. The bond-specific risk premia are measured as the estimated yield

difference between the fitted yield to maturity of individual OATes and the corresponding frictionless

yield to maturity with the bond-specific risk factor turned off. The data are daily and cover the period

from October 31, 2002, to December 30, 2022.

fairly short lived. Thus, the single-day spikes driven by illiquidity events fit that historical

pattern well.

Finally, we note the abrupt uptick on January 22, 2004, when the third OATe bond was

issued and entered our sample. By having pricing information from three bonds instead of

two, the model learns that the bond-specific risk premia in the early years of this market

most likely were modestly positive. Hence, the estimated bond-specific risk premia prior to

January 22, 2004, should be interpreted with caution. This contrasts with the later years

in our sample, when our AFNS-R model has sufficient pricing information to identify all

four state variables. This makes the bond-specific risk premia very robustly estimated as we

demonstrate in Section 4.2.

In Figure 9, we show the individual estimated bond-specific risk premium series for each

OATe bond. In general, these bonds start out with bond-specific risk premia very close to

zero in the first many years of trading. However, as the bonds become seasoned and less

traded because the majority of their outstanding notional amount is locked up in buy-and-

hold investors’ portfolios, their pricing starts to become rather sensitive to market conditions.

To demonstrate this, two bonds are highlighted in Figure 9: the OATe 1.6% 7/25/2015
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Figure 9: Individual Estimated OATe Bond-Specific Risk Premia

Illustration of the individual estimated bond-specific risk premia of French OATes for each observation

date implied by the AFNS-R model. The bond-specific risk premia are measured as the estimated yield

difference between the fitted yield to maturity of individual OATes and the corresponding frictionless

yield to maturity with the bond-specific risk factor turned off. The data are daily and cover the period

from October 31, 2002, to December 30, 2022.

that reached maturity during our sample and OATe 0.25% 7/25/2024 that was approaching

maturity by the end of our sample.

For the OATe 1.6% 7/25/2015, which reached this critical phase during the European

Sovereign Debt Crisis, we see a sizable and volatile positive bond-specific risk premium, mean-

ing there was a material liquidity discount in its pricing in 2012 and 2013. As shown in Figure

6, market conditions for OATes as measured by bid-ask spreads were indeed challenging in

2012. Under those circumstances OATes approaching maturity are likely to trade at a liq-

uidity discount similar to what the OATe 1.6% 7/25/2015 did at the time. Importantly,

though, the remaining universe of OATes continued to trade with close to zero bond-specific

risk premia even during this challenging period.

For the OATe 0.25% 7/25/2024, which was approaching maturity towards the end of our

sample, we see the opposite outcome, namely a sizable and volatile negative bond-specific risk

premium, meaning it was trading at a material price premium. That happened in the context

of highly elevated inflation well above the ECB’s 2 percent target. Under those conditions,

inflation-indexed bonds become very convenient assets to hold. As a consequence, the entire

outstanding universe of OATes was trading at a price premium towards the end of our sample.
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Figure 10: Comparison of Average Estimated Bond-Specific Risk Premia

Illustration of the average estimated bond-specific risk premium of French OATes implied by the

AFNS-R model. Also shown are the average estimated bond-specific risk premium in French OATi

yields reported by CM and the average estimated bond-specific risk premium in U.S. TIPS yields

reported by CR.

As a final exercise and to put our average estimated bond-specific risk premium from the

market for French OATes into an international context, we compare it to similar estimates

from two other major inflation-indexed bond markets, specifically the market for French

OATi’s with cash flows adjusted to the French consumer price index examined by CM and

the much larger market for U.S. TIPS with cash flows adjusted to the U.S. consumer price

index examined by CR. Figure 10 shows the respective average estimated bond-specific risk

premium series from all three markets.

We note that U.S. TIPS prices contain a sizable liquidity premium discount, which is

well documented in the literature; see ACR, D’Amico et al. (2018), and Pflueger and Vi-

ceira (2016), among many others. Cardozo and Christensen (2024) offer a rationale for the

illiquidity of inflation-indexed securities like TIPS. By being protected against inflation, in-

dexed securities are inherently less traded than nominal securities. In addition, foreigners

not exposed to the domestic price index do not benefit from owning them. Combined this

significantly reduces their trading volumes and makes the market for these securities be dom-

inated by patient domestic buy-and-hold investors. This drives up the search frictions in the

over-the-counter market for these bonds and leads to a steady-state outcome with their prices
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containing a large liquidity discount.

In contrast, CM document that French OATi’s prices contain a sizable convenience pre-

mium averaging close to 0.40 percent. They explain this with the fact that French banks are

obliged by law to offer their customers a special type of savings account, known as livret A,

the interest of which is tied mechanically to French CPI through a somewhat complicated

formula. This creates a regulatory-driven natural demand for OATi bonds as French banks

need them to hedge the promised interest payments on these savings accounts.

Based on our average estimated bond-specific risk premium for French OATes, this mar-

ket falls in between these two extremes. On the one hand, there does not seem to be any

regulatory-driven benefits of holding OATes. As a consequence, there is little reason for

them to trade at a convenience premium outside of unusual circumstances with highly ele-

vated inflation when they are obviously convenient assets to hold. On the other hand, by

being the largest safe euro-denominated market for bonds indexed to the HICP (ex tobacco),

these bonds may be able to attract sufficient demand from non-French investors in the euro

area to offset the otherwise negative price dynamics implied by the inherent illiquidity of

inflation-indexed bonds.

Overall, our results suggest that the French OATe market is a rich and relatively unbiased

source of information about bond investors’ real rate expectations in the euro area that is not

overly influenced by either liquidity discounts or flight-to-safety convenience premia. This

makes it an ideal source for our purposes of understanding the trends in the natural rate in

the euro area. Moreover, it makes it an ideal input for the construction of breakeven inflation

for the euro area, but we leave that task for future research.

To summarize, we feel that the average estimated OATe bond-specific risk premium

broadly follows a reasonable time series pattern. More importantly, these premia only consti-

tute a minor distortion in the observed OATe prices. This provides support for our approach

in which we rely on these bond prices for evidence on bond investors’ outlook for future real

rates in the euro area.

4.2 Robustness Analysis

This section examines the robustness of the average bond-specific risk premium reported in

the previous section to some of the main assumptions imposed so far. Throughout the section,

the AFNS-R model with diagonal KP and Σ matrices serves as the benchmark.

First, we assess whether the specification of the dynamics within the AFNS-R model

matters for the estimated OATe bond-specific risk premium. To do so, we estimate the

AFNS-R model with unconstrained dynamics, that is, the AFNS-R model with unrestricted

KP and lower triangular Σ matrix. Figure 11 shows the estimated OATe bond-specific risk

premium from this estimation and compares it to the series produced by our benchmark
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Figure 11: Average Estimated OATe Bond-Specific Risk Premium: Alternative P

Dynamics

Illustration of the average estimated bond-specific risk premium of French OATes for each observation

date implied by the AFNS-R model when estimated with unconstrained dynamics as detailed in the

text instead of independent factor dynamics. In both cases, the bond-specific risk premia are measured

as the estimated yield difference between the fitted yield to maturity of individual OATes and the

corresponding frictionless yield to maturity with the bond-specific risk factor turned off.

model. Note that they are barely distinguishable. Thus, we conclude that the specification

of the dynamics within the AFNS-R model only play a very modest role for the estimated

bond-specific risk premia, which is consistent with the findings of ACR in the context of U.S.

TIPS.

Second, we assess whether the data frequency plays any role for our results. To do

so, we estimate the AFNS-R model using daily, weekly, monthly, and quarterly data, and

based on the results above it suffices to focus on the most parsimonious AFNS-R model with

diagonal KP and Σ matrices. Figure 12 shows the average estimated OATe bond-specific risk

premium series from all four estimations. Note that they are barely distinguishable during

the last decade of our sample, while there are some notable discrepancies during the first

decade of our sample between the high-frequency daily and weekly series, on one hand, and

the lower-frequency monthly and quarterly series, on the other.

As to the importance of these early discrepancies, we stress that, in explaining the large

swings in OATe yields observed in Figure 3, the relatively minor differences between the high-

and low-frequency series during the first 10 years of the sample are clearly not the source of

those declines.

At a technical level, the issue is that, at low frequency, some variation in the OATe yields
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Figure 12: Average Estimated OATe Bond-Specific Risk Premium: Data Fre-

quency

Illustration of the average estimated bond-specific risk premium of French OATes for each observation

date implied by the AFNS-R model when estimated using daily, weekly, monthly, and quarterly data.

In all cases, the bond-specific risk premia are measured as the estimated yield difference between the

fitted yield to maturity of individual OATes and the corresponding frictionless yield to maturity with

the bond-specific risk factor turned off.

gets ascribed to the nonfundamental bond-specific risk premia that, at higher daily or weekly

frequency, the AFNS-R model is able to tell should go into the fundamental frictionless level,

slope, and curvature factors. Given that the ideal is to have as much of the bond yield

variation explained by the fundamental level, slope, and curvature factors rather than bond-

specific risks, these findings provide one justification for us to prefer the implementation based

on high-frequency daily data over the more conventional monthly data frequently considered

in the literature, despite the significantly higher computational costs.

Third, we assess whether the data censoring choice matters for our results. To do so,

we estimate the AFNS-R model using alternative data cutoffs: No cutoff (i.e. 0 months), 6

months, 18 months, 24 months, and 30 months in addition to our benchmark choice of using

12 months as the censoring point for OATe bonds approaching maturity. We note that we

perform this exercise for our preferred AFNS-R model to be described in Section 5.2, but we

stress that the results are not sensitive to this choice as demonstrated by the results above.

Figure 13 shows the average estimated OATe bond-specific risk premium series from all six

estimations. In general, except when we do not impose any cutoff, the estimated risk premium
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Figure 13: Average Estimated OATe Bond-Specific Risk Premium: Data Cutoff

Illustration of the average estimated bond-specific risk premium of French OATes for each observation

date implied by the AFNS-R model when estimated using daily, weekly, monthly, and quarterly data.

In all cases, the bond-specific risk premia are measured as the estimated yield difference between the

fitted yield to maturity of individual OATes and the corresponding frictionless yield to maturity with

the bond-specific risk factor turned off.

series are very similar and close to each other. Furthermore, the cutoff choice matters little

during the first 6-7 years of our sample as no bonds are approaching maturity early on in our

sample. In choosing a preferred cutoff point, there is a tension between, on the one hand,

keeping as much information as possible, and at the same time limit the impact of noisy

observations on the estimation results. We think of our benchmark choice to use a 12-month

cutoff similar to ACR as striking a sensible balance between these two considerations for our

specific data sample.

4.3 Determinants of the Bond-Specific Risk Premia

In this section, we explore which factors matter for the size of the bond-specific risk pre-

mia in the OATe prices. To explain the variation of the average estimated bond-specific

risk premium series, we run regressions with it as the dependent variable and a wide set of

explanatory variables that are thought to play a role for the bond-specific risk premia as

explained in the following.

To begin, we are interested in the role of factors that are believed to matter for OATe

market liquidity specifically or bond market liquidity more broadly as they could matter for
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the estimated bond-specific risk premia. First, we include the average OATe bond age and

the one-month realized volatility of the 10-year OATe bond yield as proxies for OATe bond

liquidity following the work of Houweling et al. (2005).16 Inspired by the analysis of Hu et

al. (2013), we also include a noise measure of OATe bond prices to control for variation in

the amount of arbitrage capital available in this market.17 Finally, we add the euro overnight

interbank rate to proxy for the opportunity cost of holding money and the associated liquidity

premia of French government bonds, including OATe bonds, as explained in Nagel (2016).

Combining these four explanatory variables tied to market liquidity and functioning produces

the results reported in regression (1) in Table 4. We note a relatively modest adjusted R2 of

0.30. The average OATe bond age, the one-month realized volatility of the ten-year OATe

bond yield, and the overnight rate all have statistically significant negative coefficients. This

implies that an increase in the liquidity risk of OATe bonds is associated with lower average

estimated bond-specific risk premia. Moreover, the noise measure, which serves as a proxy

for financial frictions in the market for OATes, has a positive, but insignificant coefficient in

this regression. Hence, we take these results to show that our average estimated bond-specific

risk premia in the OATe prices behave more like convenience premia than liquidity premia.

After having explored the role of liquidity factors, we examine the effects of factors re-

flecting risk sentiment domestically and globally on the average estimated bond-specific risk

premia. This set of variables includes the VIX, which represents near-term uncertainty about

the general stock market as reflected in options on the Standard & Poor’s 500 stock price in-

dex and is widely used as a gauge of investor fear and risk aversion. The set also contains the

yield difference between seasoned (off-the-run) U.S. Treasury securities and the most recently

issued (on-the-run) U.S. Treasury security of the same ten-year maturity. This on-the-run

(OTR) premium is a frequently used measure of financial frictions in the U.S. Treasury mar-

ket. To control for factors related to the uncertainty about the interest rate environment, we

include the MOVE index. The fourth variable is the U.S. TED spread, which is calculated

as the difference between the three-month U.S. LIBOR and the three-month U.S. T-bill in-

terest rate. This spread represents a measure of the perceived general credit risk in global

financial markets. As an additional indicator of credit risk and credit risk sentiment, we use

the composite measure of the credit risk of French government bonds shown in Figure 5. The

next variable in the set is the ten-year U.S. Treasury yield from the Federal Reserve’s H.15

database, which is included to control for reach-for-yield effects in advanced economies. This

may be particularly relevant for our sample during the period between December 2008 and

16The ten-year OATe bond yield is the ten-year fitted real yield implied by the AFNS model estimated
using our sample of daily OATe prices.

17The noise measure is the mean absolute fitted error from the estimated daily AFNS model, where each
error is calculated as the difference between the observed OATe price converted into yield to maturity and
the fitted OATe price also converted into yield to maturity.
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Explanatory variables (1) (2) (3)

Avg. bond age (yrs) -3.039∗∗∗ -4.367∗∗∗

(0.379) (0.391)

One-month realized volatility of ten-year real yield (bps) -0.203∗∗∗ -0.233∗∗∗

(0.068) (0.054)

Bond noise measure (bps) 0.385 -0.780∗∗∗

(0.267) (0.284)

Overnight rate (%) -0.708∗ -1.421∗∗

(0.420) (0.565)

VIX (%) -0.322∗∗∗ -0.070
(0.068) (0.059)

Ten-year OTR premium (bps) 0.698∗∗∗ 0.525∗∗∗

(0.116) (0.070)

MOVE Index (bps) -0.141∗∗∗ -0.114∗∗∗

(0.039) (0.022)

TED spread (bps) 0.024∗ 0.036∗∗∗

(0.013) (0.011)

Composite credit risk measure (bps) 0.068∗∗∗ 0.055∗∗∗

(0.013) (0.016)

Ten-year US Treasury yield (%) 1.960∗∗∗ -2.738∗∗∗

(0.422) (0.609)

WTI ($) 0.054∗∗∗ 0.159∗∗∗

(0.018) (0.019)

Constant 17.081∗∗∗ -1.753 29.015∗∗∗

(2.567) (3.189) (3.542)

N 4838 4838 4838
Adjusted R2 0.30 0.27 0.53

Table 4: Regression Results for Average Estimated OATe Bond-Specific Risk

Premium

The table reports the results of regressions with the average estimated bond-specific risk premium of

French OATes as the dependent variable and 11 explanatory variables. Standard errors computed by

the Newey-West estimator (with 13 lags) are reported in parentheses. Asterisks *, ** and *** indicate

significance at the 10 percent, 5 percent, and 1 percent levels, respectively.
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December 2015 and again in the 2020-2021 period when U.S. short-term interest rates were

constrained by the zero lower bound. Finally, we include the West Texas Intermediate (WTI)

Cushing crude oil price to proxy for energy prices, which represent a significant risk to the in-

flation outlook in many countries around the world, including many euro area member states.

The results of the regression with these seven explanatory variables is reported in regression

(2) in Table 4. This produces a modest adjusted R2 of 0.27. We note that all seven variables

have some explanatory power as their estimated coefficients are all statistically significant.

To assess the robustness of the results from the first two regressions, we include all variables

with the results reported in column (3) in Table 4. This joint regression produces a high

adjusted R2 of 0.53. The significant increase in the adjusted R2 suggests that there is little

overlap between the two sets of explanatory variables. The first set is squarely focused on

the liquidity in the OATe market, while the second set represents global risk sentiment and

flight-to-safety effects.

With the systematic negative coefficients on the liquidity risk variables—and on the VIX

and the MOVE Index in the full regression model—we feel that we can confidently reject the

conjecture that our average estimated bond-specific risk premia in the OATe prices should

represent liquidity risk premia. This is also consistent with the interpretation we offered in

Section 4.1, when we contrasted our estimates with the estimated U.S. TIPS liquidity premia

reported by CR. Hence, the trading dynamics in the OATe market seem to be fundamentally

different from those prevailing in the U.S. TIPS market.

Finally, changes in perceived credit risk as reflected in either the TED spread or our

composite credit risk measure are significantly positively correlated with changes in the bond-

specific risk premia. Based on these results we conclude that some part of the bond-specific

risk premia seems to reflect compensation for credit risk.

5 A New Normal for Euro-Area Interest Rates?

In this section, we first go through a careful model selection process to find a preferred

specification of the AFNS-R model’s objective P-dynamics. We then use this AFNS-R model

to account for bond-specific risk and standard term premia in the OATe prices and obtain

expected real short rates and the associated measure of the natural rate. Finally, we compare

this estimate to other market- and macro-based estimates from the literature and consider

model projections to assess its likely path going forward.
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5.1 Definition of the Natural Rate

Our working definition of the natural rate of interest r∗t is

r∗t =
1

5

∫ t+10

t+5
EP

t [r
R
s ]ds, (7)

that is, the average expected real short rate over a five-year period starting five years ahead,

where the expectation is with respect to the objective P-probability measure. As noted in the

introduction, this 5yr5yr forward average expected real short rate should be little affected by

short-term transitory shocks. Alternatively, r∗t could be defined as the expected real short-

term interest rate at an infinite horizon. However, this quantity will depend crucially on

whether the factor dynamics exhibit a unit root. As is well known, the typical spans of time

series data that are available do not distinguish strongly between highly persistent stationary

processes and nonstationary ones. Our model follows the finance literature and adopts the

former structure, so strictly speaking, our infinite-horizon steady-state expected real rate is

constant. However, we view our data sample as having insufficient information in the ten-year

to infinite horizon range to definitively pin down that steady state, so we prefer our definition

with a medium- to long-run horizon. Moreover, we examine the sensitivity of our results to

using alternative integration intervals in the definition r∗t and find them to be robust.

5.2 Model Selection

For estimation of the natural rate and associated real term premia, the specification of the

mean-reversion matrix KP is crucial as noted earlier. To select the best-fitting specification

of the model’s real-world dynamics, we use a general-to-specific modeling strategy in which

the least significant off-diagonal parameter of KP is restricted to zero and the model is re-

estimated. This strategy of eliminating the least significant coefficient is carried out down to

the most parsimonious specification, which has a diagonal KP matrix. The final specification

choice is based on the value of the Bayesian information criterion (BIC), as in Christensen et

al. (2014).18

The summary statistics of the model selection process are reported in Table 5. The BIC

is minimized by specification (12), which has a KP-matrix given by

KP
BIC =




κP11 0 0 0

0 κP22 κP23 0

0 0 κP33 0

0 0 0 κP44




.

18The Bayesian information criterion is defined as BIC = −2 logL+k log T , where k is the number of model
parameters and T = 5,258 is the number of daily data observations.
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Alternative Goodness of fit statistics
specifications logL k p-value BIC

(1) Unrestricted KP 234,604.3 65 n.a. -468,651.7
(2) κP34 = 0 234,603.0 64 0.11 -468,657.7
(3) κP34 = κP12 = 0 234,602.3 63 0.24 -468,664.8
(4) κP34 = κP12 = κP31 = 0 234,601.7 62 0.27 -468,671.6
(5) κP34 = . . . = κP43 = 0 234,600.7 61 0.16 -468,678.6
(6) κP34 = . . . = κP42 = 0 234,599.5 60 0.12 -468,684.9
(7) κP34 = . . . = κP32 = 0 234,598.8 59 0.24 -468,692.1
(8) κP34 = . . . = κP41 = 0 234,593.8 58 < 0.01 -468,690.7
(9) κP34 = . . . = κP14 = 0 234,589.9 57 < 0.01 -468,691.5
(10) κP34 = . . . = κP13 = 0 234,584.9 56 < 0.01 -468,690.0
(11) κP34 = . . . = κP21 = 0 234,579.1 55 < 0.01 -468,687.0
(12) κP34 = . . . = κP24 = 0 234,577.4 54 0.07 -468,692.2

(13) κP34 = . . . = κP23 = 0 234,570.8 53 < 0.01 -468,687.5

Table 5: Evaluation of Alternative Specifications of the AFNS-R Model

There are 13 alternative estimated specifications of the AFNS-R model. Each specification is listed

with its maximum log likelihood (logL), number of parameters (k), the p-value from a likelihood ratio

test of the hypothesis that it differs from the specification above with one more free parameter, and

the Bayesian information criterion (BIC). The period analyzed covers daily data from October 31,

2002, to December 30, 2022.

KP KP
·,1 KP

·,2 KP
·,3 KP

·,4 θP Σ

KP
1,· 0.0448 0 0 0 0.0388 σ11 0.0054

(0.0785) (0.0249) (0.0000)
KP

2,· 0 1.0132 0.8448 0 -0.0260 σ22 0.0117

(0.3200) (0.2718) (0.0105) (0.0002)
KP

3,· 0 0 0.5067 0 -0.0200 σ33 0.0184

(0.2678) (0.0123) (0.0003)
KP

4,· 0 0 0 0.0817 -0.0287 σ44 0.0189

(0.1420) (0.0441) (0.0025)

Table 6: Estimated Dynamic Parameters of the Preferred AFNS-R Model

The table shows the estimated parameters of the KP matrix, θP vector, and diagonal Σ matrix for

the preferred AFNS-R model according to the BIC. The estimated value of λ is 0.3245 (0.0013), while

κQ
R = 7.5228 (0.9785), and θQR = 0.0002 (0.0000). The maximum log likelihood value is 234,577.4. The

numbers in parentheses are the estimated parameter standard deviations.

This specification shows that the model’s P-dynamics preferred by the data have a struc-

ture similar to the one assumed under the risk-neutral Q-dynamics used for pricing to achieve

the Nelson-Siegel factor loading structure, which is comforting.

The estimated parameters of the preferred specification are reported in Table 6. The

estimated Q-dynamics used for pricing and determined by (Σ, λ, κQR, θ
Q
R) are very close to

those reported in Table 3 for the AFNS-R model with diagonal KP. This implies that both
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model fit and the estimated OATe bond-specific risk premia from the preferred AFNS-R

model are very similar to those already reported and therefore not shown. Furthermore, the

estimated objective P-dynamics in terms of θP and Σ are also qualitatively similar to those

reported in Table 3.

Still, to understand the role played by the mean-reversion matrix KP for estimates of the

natural rate, we will later analyze the most flexible model with unrestricted mean-reversion

matrix KP and the most parsimonious model with diagonal KP, in addition to our preferred

specification described above.

5.3 Estimates of the Natural Rate

Our market-based measure of the natural rate is the average expected real short rate over a

five-year period starting five years ahead. This 5yr5yr forward average expected real short

rate should be little affected by short-term transitory shocks and well positioned to capture

the persistent trends in the natural rate.

To illustrate the decomposition underlying our definition of r∗t , recall that the real term

premium is defined as

TPt(τ) = yt(τ)−
1

τ

∫ t+τ

t

EP
t [rs]ds.

That is, the real term premium is the difference in expected real returns between a buy-and-

hold strategy for a τ -year real bond and an instantaneous rollover strategy at the risk-free real

rate rt. Note that yt(τ) in this definition is the frictionless yield clean of any bond-specific risk

premia. Figure 14 shows the preferred AFNS-R model decomposition of the 5yr5yr forward

frictionless real yield based on this definition. The solid gray line is the 5yr5yr forward real

term premium, which, although volatile, has fluctuated around a fairly stable level since the

early 2000s. As suggested by theory, this premium is countercyclical and elevated during

economic recessions. In contrast, the estimate of the natural rate of interest implied by the

AFNS-R model—the black line—shows a gradual decline from above 1.5 percent in the early

2000s to well below -1.5 percent by late 2021, with a partial retracing of that decline during

the last year of our sample. Importantly, the vast majority of the persistent trends in the

5yr5yr forward real yield is driven by similar trends in this measure of r∗t .

To examine the sensitivity of our r∗t estimate to our choice to define r∗t as the average

expected real short rate over a five-year period starting five years ahead, we consider three

alternative definitions that all embed a longer view about the time it takes for the euro

area economy to reach steady state. The first assumes that this takes seven years and then

measures the neutral real rate as the average expected real short over the following three

years. It is referred to as the 7yr3yr r∗t estimate. The second alternative takes an even longer

view and assumes that it takes nine years to reach steady state and then measures the neutral
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Figure 14: AFNS-R Model 5yr5yr Real Yield Decomposition

real rate as the average expected real short rate over a short one-year period. It is referred to

as the 9yr1yr r∗t estimate. Finally, the third alternative takes the longest view and assumes

that it takes ten years for the economy to reach steady state and then measures r∗t as the

average expected real short rate over a five-year horizon as in our benchmark definition. It is

referred to as the 10yr5yr r∗t estimate. Figure 15 shows all four r∗t estimates, which are very

close to each other thanks to the high estimated persistence of the state variables within our

preferred AFNS-R model. Hence, our r∗t estimate of the neutral real rate for the euro area

has very little sensitivity to the specific definition of r∗t used. Thus, our reported results are

very robust from that perspective.

To assess the sensitivity of our r∗t estimate to the specification of the mean-reversion

matrix KP, we compare it in Figure 16 to the estimates from the AFNS-R models with un-

restricted and diagonal KP matrix, respectively. As noted in Figure 16, our r∗t estimate is

indeed very sensitive to this model choice, but parsimonious specifications like our preferred

AFNS-R model specification favored by the data tend to give fairly similar r∗t estimates. Still,

these results demonstrate how insignificant off-diagonal parameters in the specification of the

mean-reversion KP matrix can materially distort estimates of r∗t . Hence, the results under-

score the importance of our careful model selection procedure needed to identify appropriate

specifications of KP supported by the bond price data.

The effect on the estimated natural rate from accounting for the bond-specific risk premia

in OATe prices is the subject of Figure 17. The black line is the estimate of r∗t from the
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Figure 15: The Sensitivity of r∗ Estimate to Alternative Definitions
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Figure 16: The Sensitivity of r∗ Estimate to KP Specification

AFNS-R model, while the gray line is the estimate from the AFNS model, which does not

account for time-varying bond-specific risk premium effects in OATe prices.19 Accounting

19For the AFNS model, we also go through a careful model selection process and use the BIC to determine
a preferred specification, as described in online Appendix A.
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Figure 17: Effect of the Bond-Specific Risk Adjustment on Estimates of r∗
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Figure 18: The Sensitivity of r∗ Estimate to Data Frequency

for the bond-specific risk premia in OATe prices leads to a persistent and diverging difference

in the two natural rate estimates. Thus, even though both average close to zero during our

sample period, it is crucial to account for the bond-specific risk premia to produce reliable

estimates of the natural rate of interest.
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Figure 19: The Sensitivity of r∗ Estimate to Data Cutoff

The role of the data frequency is examined in Figure 18, which shows the r∗t estimates

implied by our preferred AFNS-R model estimated at daily, weekly, monthly, and quarterly

frequency. The results show that our estimate has little sensitivity to our choice to focus on

high-frequency daily data. This also underscores the usefulness of our model for real-time

analysis as we also demonstrate later on in Section 6.2.

As a final robustness check, we vary the data cutoff used to censor the data for each OATe

that approaches maturity from zero months (i.e. no censoring of any observations) up to 30

months in six month increments with the 12-month cutoff being our benchmark. Figure 19

shows the resulting six r∗t estimates. We note that our r∗t estimate is sensitive to the cutoff

choice to some extent. In general, there is a pattern whereby a later cutoff—meaning more

data is kept and included in the estimation—leads to lower r∗t estimates. This is explained

by the fact that the OATe yield curve is generally upward sloping most of the time. As a

consequence, keeping short-term OATes in the sample implies that the estimated real short

rate rt, which is the launch point for the projections underlying our definition of r∗t , will tend

to be lower all else being equal. In addition, there is a mild tendency for the r∗t estimates to

be slightly more volatile as we lower the cutoff point towards zero. Overall, we consider our

choice to use a 12-month cutoff as recommended by ACR to strike a sensible balance between

including as much data as possible and the stability of our r∗t estimate.
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Figure 20: Comparison with Foreign Market-Based Estimate of r∗

5.4 Comparison of Estimates of the Natural Rate

In this section, we compare our estimate of the natural rate to other existing estimates of

the natural interest rate in the literature. To start, we compare our r∗t estimate from the

preferred AFNS-R model to the U.S. market-based estimate reported by CR using solely the

prices of U.S. TIPS. These two market-based estimates of the natural rate are shown in Figure

20. Their high positive correlation and similar downward trend are both evident. Also, they

share the common feature, that their most pronounced declines over the past two decades

happened before and after, but not during the GFC. These observations combined suggest

that the factors depressing U.S. and euro-area interest rates are likely to be global in nature

and are not particularly tied to developments surrounding the GFC.

Now, we turn to the crucial comparison of our finance-based estimate of r∗t with estimates

based on macroeconomic data. Figure 21 shows the r∗t estimate from our preferred AFNS-R

model, along with the macro-based estimate of r∗t from Holston et al. (2017, henceforth HLW),

which is the filtered estimate generated by applying the approach described in Laubach and

Williams (2003) to euro-area macroeconomic series. The r∗t estimate from HLW starts in 1972.

However, until the onset of the GFC, this macro-based estimate appears to be stationary and

remains close to 2.5 percent the whole time. This is consistent with the received wisdom

of that era in monetary economics that viewed the natural rate as effectively constant—for

example, as assumed in the large Taylor rule literature. It is only in the aftermath of the GFC

that we see a persistent large downward movement in the macro-based r∗t estimate, which
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is much later and smaller than the sizable drop in our market-based estimate. Importantly,

at the end of our sample, this macro-based estimate is -0.68 percent and hence close to our

market-based estimate.

The second macro-based estimate of r∗t is taken from Del Negro et al. (2019, henceforth

DGGT). They estimate a flexible vector autoregression model with common trends for a

sample of data from 7 advanced economies, including Germany, France, and Italy, covering the

period from 1870 to 2016 and here extended through the end of 2020.20 They use annual data

on short- and long-term government bond yields, consumer prices, and real consumption per

capita in addition to Moody’s Baa corporate bond yields. In their analysis, it is an assumption

of no arbitrage in the long run that implies a factor structure for the trend of real interest

rates across countries. They find that real interest rates across these 7 countries share a

global common trend that has been particularly pronounced since the 1970s. Moreover, using

regression analysis, they find that declining consumption growth and increasing convenience

yields from the safety and liquidity offered by government bonds from these countries are the

main drivers of declining real rates the past 40 years. We calculate the average of their r∗t

estimates for Germany, France, and Italy to get a representative estimate for the euro area.

This series is shown with a solid blue line in Figure 21. Note that their r∗t estimate for the

euro area was increasing back in the 1960s and 1970s before starting a pronounced secular

decline in the early 1980s. The trend lower continues through the end of the shown sample

and leaves it below zero by 2020 not much above our market-based r∗t estimate.

The third macro-based estimate of r∗t is taken from Ferreira and Shousha (2023, henceforth

FS) and shown with a solid green line in Figure 21. They consider a panel of 11 advanced

economies and estimate the longer-run neutral real interest rates while accounting for changes

in the global supply of safe assets and their convenience yields in addition to productivity

and demographics and global spillovers from their developments. Their r∗t estimate for the

euro area starts in 1960 and fell steadily until the mid-1970s. It reversed some of the decline

in the early 1980s and remained fairly stable until the late 1990s. It then steadily declined

until 2008 when it reached a historic low of -0.89 percent. Since then it has gradually trended

higher and stood at 0.1 percent by the end of 2023. This upward trend the past 15 years

with a net increase of about 1 percentage point sets it apart from the other estimates, which

mostly trend lower during this period.

The fourth and final macro-based estimate of r∗t comes from Davis et al. (2024, henceforth

DFHMT). They introduce a unified no-arbitrage macro-finance model with two trend factors

used to estimate the natural rate r∗t for 10 advanced economies, including Germany, France,

and Spain. Using a multitude of data sources on trend growth and inflation in addition to

risk premium series, DFHMT also underscore the need for a coherent model approach like

20We thank Marco Del Negro for sharing the updated data.
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Figure 21: Comparison with Macro-Based Estimates of r∗

ours. Importantly, the interpretation of their natural rate r∗t is consistent with Laubach and

Williams (2003) of representing a medium-run real rate anchor for monetary policy. Our

finance-based definition taken from CR is intended to capture the same concept. Hence, the

DFHMT r∗t estimate should be comparable to ours. One notable difference, though, is that,

by relying on a single average yield equation, their estimation is not fully exploiting all the

information in the yield curve unlike our approach.

To get a representative estimate for the euro area, we calculate the average of their r∗t

estimates for Germany, France, and Italy. The resulting r∗t series is shown with a solid yellow

line in Figure 21. While increasing in the 1970s and 1980s, the DFHMT r∗t estimate peaked

in late 1989. In the subsequent more than 30 years, r∗t fell more than 4 percentage points

according to their estimate and ends the sample slightly below zero. For the overlapping

period this entails a close similarity between their r∗t estimate for the euro area and our

market-based r∗t estimate. Overall, this pattern aligns well with the observed OATe yields

shown in Figure 3. Moreover, using panel regressions, DFHMT relate their r∗t estimates to

economic growth and demographic variables and find that slowing growth and population

aging have been significant factors in driving down the natural rate r∗t globally, and in their

three European countries in particular. Given the similarity of our market-based r∗t to their

estimate, we speculate that our estimate are likely influenced by those same factors.

The final series shown in Figure 21 is the median of a variety of r∗t estimates reported

by Brand et al. (2024, henceforth BLM). They include both macro- and market- as well
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as survey-based estimates of r∗t for the euro area.21 The similarities in both the declining

trend and the general level of their median r∗t estimate and our market-based r∗t estimate

are striking. In particular, they both suggest that the natural rate experienced a significant

decline early on during the COVID-19 pandemic and a fairly sharp recovery of that decline

in early 2022. As a result, both series suggest that r∗t in the euro area has changed little

on net since before the pandemic. Still, all six considered measures suggest that r∗t in the

euro area has declined notably the past 20-30 years and remain close to zero at the end of

our sample despite the recent sharp increases in long-term interest rates in the euro area and

other major advanced economies. This obviously matters for judgments about the stance of

monetary policy, as we will discuss later on.

5.5 Projections of the Natural Rate

In light of the intense debate among researchers, investors, and policymakers about whether

there is a new lower normal for interest rates, we end our analysis in this section by presenting

the outlook for the natural rate based on our preferred AFNS-R model. We follow the

approach of Christensen et al. (2015) and simulate 10,000 factor paths over a ten-year horizon

conditioned on the shape of the OATe yield curve and investors’ embedded forward-looking

expectations as of the end of our sample (that is, using estimated state variables and factor

dynamics as of December 30, 2022). The simulated factor paths are then converted into

forecasts of r∗t . Figure 22 shows the median projection and the 5th and 95th percentile values

for the simulated natural rate over a ten-year forecast horizon.22

First, we note that our r∗t estimate experienced some reversal of the declines from the

past two decades during the last year of our sample, which left it at -0.37 percent at its end.

The median r∗t projection shows a persistent, but very gradual further reversal throughout

the ten-year projection period that would put it close to 0.2 percent by 2032. The upper 95th

percentile rises more rapidly and moves slightly above 2 percent by the end of the projection

period, while the lower 5th percentile represents outcomes with the natural rate trending

persistently lower into negative territory and remaining there over the entire forecast horizon.

Although stationary, these results show that a highly persistent model like our preferred

AFNS-R model can deviate from the estimated mean for several decades. Thus, nonstationary

dynamics such as unit roots or trending shifting end points are not necessary to satisfactorily

model the secular persistent decline of interest rates observed in the OATe market the past

two decades. Of course, like most estimates of persistent dynamics, the model may still suffer

from some finite-sample bias in the estimated parameters of its mean-reversion matrix KP,

21We thank Claus Brand for sharing this series.
22Note that the lines do not represent short rate paths from a single simulation run over the forecast horizon;

instead, they delineate the distribution of all simulation outcomes at a given point in time.
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Figure 22: Ten-Year Projections of r∗ from AFNS-R Model

which would imply that it does not exhibit a sufficient amount of persistence—as described

in Bauer et al. (2012). In turn, this would suggest (all else being equal) that the outcomes

below the median are more likely than a straight read of the simulated probabilities indicate,

and correspondingly those above the median are less likely than indicated. As a consequence,

we view the projections in Figure 22 as an upper bound estimate of the true probability

distribution of the future path for the natural rate.

Finally, our OATe-based estimate of r∗t appears relevant to the debate about the source

of the decline in the natural rate. In particular, our measure of the natural rate did not

fluctuate much in response to the GFC. This relative stability suggests that flight-to-safety

and safety premium explanations of the lower natural rate, which have been put forward

to explain low U.S. interest rates, are unlikely to be key drivers of the downtrend in euro-

area interest rates. Instead, our estimates appear more broadly consistent with many of the

explanations that attribute the decline in the natural rate to real-side fundamentals such as

changing demographics (e.g., Carvalho et al. 2016, Favero et al. 2016, and Gagnon et al. 2016).

6 The Stance of ECB Monetary Policy

In this section, as a final application of our market-based estimate of r∗t , we use it to construct

measures of the stance of the ECB’s monetary policy.

In theory, the stance of monetary policy would be given by the difference between the
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Figure 23: Market-Based Measures of the Stance of Monetary Policy

current real instantaneous short rate and its natural level as reflected in r∗t , i.e., it would be

defined as

ζt = rt − r∗t .

The intuition behind this definition is straightforward. When the current real short rate is

above its natural level, interest rates of all kinds are likely to be above their steady-state level

and will provide some headwind for economic activity though higher borrowing costs and help

slowdown the economy. And vice versa, when the current real short rate is below its natural

level, the general interest rate level is likely to be below what is needed to maintain trend

growth, and businesses and households may take advantage of that by making investments in

new projects or housing at cheap financing rates, which will help boost economic activity.

Unfortunately, the instantaneous real short rate is not directly observable because we

do not have a continuous measure of the very short end of the OATe yield curve, given

that individual OATes reach maturity infrequently as noted in Figure 2(b). Furthermore,

as explained earlier, OATes, like other inflation-indexed bonds, tend to have rather erratic

prices close to maturity thanks to both low liquidity and the unpredictability of the final

inflation adjustments to be earned—the sudden and very sharp spike in HICP inflation in

2022 is very illustrative in this regard.23 Thus, to make the definition above operational, we

23For comparison, a standard fixed-coupon bond pays a principal of 1 and fixed coupons C. Thus, there is
no uncertainty about its final cash flow in the months leading up to its maturity date, which helps maintain
the liquidity of such securities.
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consider instead three proxies that we think of as reasonable substitutes for rt. The first is

given by the one-year fitted real OATe yield from an estimation of the AFNS model without

censoring any bond price information, that is, OATe prices remain in the sample until they

mature. This provides the best possible coverage around the one-year maturity point but

comes at the cost of adding significant noise from the prices of OATes close to maturity.

Still, one can argue that this yield measures the full actual real yields observed in financial

markets—including noise and frictions—and hence represents the most realistic real-world

equivalent to the textbook short-term real rate embedded in the definition of ζt. To limit the

noise and erratic behavior while preserving the desirable economic interpretation, we consider

a second proxy for the stance of monetary policy calculated using instead the one-year fitted

real yield from an estimation of the AFNS model imposing our baseline censoring of price

information when bonds have less than one year to maturity. The third and final proxy is

the one-year frictionless real yield implied by our preferred AFNS-R model. This is a cleaner

and more stable measure of the one-year real yield as it adjusts for the noise from the bond-

specific risk premia. However, in doing so, it may be different from the textbook concept of

the real short rate rt appearing in the original definition of ζt. Moreover, as OATe bond

prices with less than one year to maturity are censored in the estimation of our preferred

AFNS-R model, it may capture the short end of the OATe real yield curve less accurately

similar to our second proxy.

The resulting three empirical measures of the ECB’s stance of monetary policy are shown

in Figure 23. In general, the three measures are quite similar and highly positively correlated,

although there are important differences to note. Allowing for no data cutoff in the estimation

that produces the short-term real yields, provides a stance measure with sharp spikes up or

down whenever a bond in the sample approaches maturity. Crucially, these sharp short-

lived gyrations are uncorrelated with the stance of monetary policy, which leads us to reject

this measure. In comparison, using frictionless real yields to construct our measure of the

stance of monetary policy, provides a more smooth and stable estimate. Unfortunately, as

we demonstrate in Figure 24 below, this measure of the stance of monetary policy is very

sensitive in the first decade of our sample to the data frequency used in the model estimation,

which is an undesirable feature. In contrast, using fitted real yields based on our baseline

approach with censoring of the bond prices with less than one year to maturity, provides a

stance measure that is both relatively stable and robust to the data frequency used in the

model estimation. As a consequence, this is our preferred measure of the stance of monetary

policy in the euro area.

Comfortingly, there are several important commonalities across the three measures worth

highlighting. First, monetary policy in the euro area was tight going into the GFC in 2007 and

remained above neutral into 2009 before finally reaching an accommodative level. Second, in
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the 2015-2018 period, quantitative easing and other unconventional measures along with for-

ward guidance managed to push the stance of monetary policy into accommodative territory

and keep it there for several years according to all three measures. Third, at the peak of the

COVID-19 pandemic in spring 2020, monetary policy reached a tightening stance and did not

become accommodative until early 2021. Finally and similar to the United States, the ECB

response to the spike in inflation following the global economic reopening after the pandemic

was delayed, which had the implication that monetary policy remained very accommodative

for an extended period of time and did not reach a tightening posture until the very end of

our sample, and only according to one of our three measures. This may have contributed

to prolonging the spell of high inflation in the euro area during this period, but it falls well

outside the focus of this paper to make any determinations to that effect, so we leave it for

future research to explore that question further.

Based on these observations we think of our empirical market-based measures of the

ECB’s monetary policy stance as realistic and representative. Moreover, as demonstrated

by our analysis, they can be estimated at daily frequency and hence used for truly real-time

policy analysis. This represents a major advantage relative to existing macro-based estimates,

which are only available with a lag and may be subject to significant data revisions.

6.1 Comparison with a Text-Based Policy Stance Measure

To validate our market-based measures of the stance of ECB’s monetary policy, we focus on

Hubert and Portier (2024, henceforth HP), who construct a text-based measure of the ECB’s

stance of monetary policy. Specifically, they use textual analysis techniques to identify words

that are either dovish or hawkish in the policy statement and during the press conference

following each ECB governing council meeting. By subtracting the dovish count from the

hawkish count and divide by the total word count, they obtain a measure of the net hawkish

signal or stance conveyed after each policy meeting since 2001.

For this comparison, we use our preferred measure of the stance of ECB monetary policy

based on the one-year fitted real yield using 12-month censoring in the model estimation. In

Figure 25, we compare our chosen market-based measure of the stance of monetary policy in

the euro area to the text-based ECB stance measure reported by HP. We note that, although

broadly similar in the 2003-2008 period and again in the 2015-2019 period, the two measures

imply sharply different assessments of ECB’s monetary policy stance during the European

Sovereign Debt Crisis in 2010-2013, during the COVID-19 pandemic in 2020-2021, and during

the post-pandemic spike in inflation. Interestingly, the text-based measure suggests that ECB

policy was neutral-to-net hawkish during the sovereign debt crisis, while our market-based

measure suggests that monetary policy in the euro area was accommodative during this period

by historical standards. During the COVID-19 pandemic we see the opposite pattern whereby
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(a) Stance of monetary policy, one-year fitted real yield, no cutoff
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(b) Stance of monetary policy, one-year fitted real yield, 12-month cutoff
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(c) Stance of monetary policy, one-year frictionless real yield, 12-month cutoff

Figure 24: Sensitivity of Measures of the Stance of Monetary Policy to Data Fre-

quency
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Figure 25: Comparison with a Text-Based Measure of the Stance of Monetary

Policy

ECB policymakers tried to convey an accommodative stance, but the market-based measure

indicates that this was not achieved until after the pandemic when inflation spiked up. During

this latter, equally interesting period the measures again flip sign. While ECB policymakers

were trying to send very strong hawkish signals, the market-based measure suggests that

monetary policy was very accommodative initially as short-term real rates were very negative

due to the high inflation. As a consequence, monetary policy only reached a restrictive stance

by late 2022 according to our market-based measure.

What explains this very different pattern for the text-based measure during these crucial

periods? To offer an answer, we note that HP’s measure reflects—in a very direct way—the

monetary policy stance communicated by ECB officials in the statement and through the

answers to questions during the press conference. However, by design, it fails to capture to

what extent the messaging is actually registered by financial market participants. In contrast,

our market-based measure is designed to exactly capture the information investors have priced

into the deep and liquid OATe bond market. Under the assumption that investors are forward

looking and have every monetary incentive to use what they deem to be the best available

information in devising their trading strategies, this “best available” information gets reflected

in the bond prices. Under the additional assumption that our model is well specified, it should

extract this information and the embedded investor expectations in a reliable manner. This

is the theoretical and econometric argument for why our market-based measure of the stance
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of monetary policy should be preferable to the text-based measure produced by HP. This also

explains why they may be different and not necessarily highly positively correlated.

6.2 Real-Time Analysis

As a final exercise, we examine the real-time behavior of both our r∗t estimate and our proposed

measure of the stance of ECB’s monetary policy. Given the documented robustness of both

measures to the data frequency used, we choose to perform the exercise at the monthly

frequency, in part to save on computing time and in part because this is the frequency

conventionally used in macro-based policy analysis. Practically, we start the model estimation

on January 31, 2015, add one month of data to our sample, re-estimate the models, and

continue this process until we reach our full sample that ends on December 30, 2022. This

allows us to study the real-time model performance before, during, and after the COVID-19

pandemic.

Figure 26 shows the resulting real-time estimates with a comparison with the correspond-

ing full-sample estimates. We note that the real-time estimates of both r∗t and the policy

stance measure are very close to their full-sample counterparts. We take this evidence to

demonstrate that our model can be reliably used for real-time analysis.

7 Conclusion

Given the historic downtrend in yields in recent decades, many researchers have investigated

the factors pushing down the steady-state level of the safe short-term real interest rate.

However, all of this empirical work has been based on macroeconomic models and data,

and uncertainty about the correct macroeconomic specification has led some to question the

resulting macro-based estimates of the natural rate. We avoid this debate by introducing a

market-based measure of the natural rate derived from an empirical dynamic term structure

model estimated solely on the prices of bonds issued by the French government and indexed

to the HICP—known as OATes. By adjusting for both OATe bond-specific risk premia

and real term premia, we uncover investors’ expectations for the underlying frictionless real

short rate for the five-year period starting five years ahead. This measure of the natural rate

of interest exhibits a gradual decline over the past two decades that accounts for about 75

percent of the general decline in euro-area bond yields. Specifically, as of the end of December

2022, the AFNS-R model estimate of r∗t is -0.37 percent, with a net decline of slightly less

than 2 percentage points since the early 2000s.

Given that our measure of the natural rate of interest is based on the forward-looking

information priced into the active inflation-indexed OATe market and can be updated at

a daily frequency as we demonstrate, it could serve as an important input for real-time
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(b) Stance of monetary policy

Figure 26: Real-Time Estimates of r∗t and the Stance of Monetary Policy

monetary policy analysis. Our related empirical measures of the stance of monetary policy

would seem to be particularly relevant to examine further in this regard. For future research,

our methods could also be expanded along an international dimension. With a significant

degree of capital mobility, the natural rate will depend on global saving and investment, so

the joint modeling of inflation-indexed bonds in several countries could be informative (see
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HLW for an international discussion of the natural rate). Finally, our measure could be

incorporated into an expanded joint macroeconomic and finance analysis—particularly with

an eye towards further understanding the determinants of persistent changes in the natural

rate.
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A Model Selection in the Daily AFNS Model

In this appendix, we go through a careful model selection procedure for the AFNS model

estimated at daily frequency similar to the one described in the main text for the AFNS-R

model.

Alternative Goodness of fit statistics
Specifications logL k p-value BIC

(1) Unrestricted KP 217,252.5 17 n.a. -434,359.4
(2) κP31 = 0 217,252.5 16 1.00 -434,367.9
(3) κP31 = κP21 = 0 217,251.9 15 0.27 -434,375.3
(4) κP31 = κP21 = κP32 = 0 217,250.8 14 0.14 -434,381.7
(5) κP31 = . . . = κP23 = 0 217,248.6 13 0.04 -434,385.8
(6) κP31 = . . . = κP12 = 0 217,247.3 12 0.11 -434,391.8

(7) κP31 = . . . = κP13 = 0 217,238.6 11 < 0.01 -434,383.0

Table 1: Evaluation of Alternative Specifications of the AFNS Model

There are seven alternative estimated specifications of the AFNS model. Each specification is listed with

its maximum log likelihood (logL), number of parameters (k), the p-value from a likelihood ratio test of

the hypothesis that it differs from the specification above with one more free parameter, and the Bayesian

information criterion (BIC). The period analyzed covers daily data from October 31, 2002, to December 30,

2022.

For estimates of r∗t based on our definition, the specification of the mean-reversion ma-

trix KP is critical. To select the best fitting specification of the AFNS model’s real-world

dynamics, we use a general-to-specific modeling strategy in which the least significant off-

diagonal parameter of KP is restricted to zero and the model is re-estimated. This strategy

of eliminating the least significant coefficient is carried out down to the most parsimonious

specification, which has a diagonal KP matrix. As in the main text, the final specification

choice is based on the value of the Bayesian information criterion (BIC).

The summary statistics of the model selection process are reported in Table 1. The BIC

is minimized by specification (6), which has a KP matrix given by

KP
BIC =




κP11 0 κP13

0 κP22 0

0 0 κP33


 .

The estimated parameters of this preferred specification are reported in Table 2. We note

that most of the parameters are very close to those reported in the main text for the AFNS

2



KP KP
·,1 KP

·,2 KP
·,3 θP Σ

KP
1,· 0.1709 0 -0.1702 0.0318 Σ1,1 0.0036

(0.0732) (0.0392) (0.0169) (0.0000)
KP

2,· 0 0.3863 0 -0.0242 Σ2,2 0.0129

(0.2018) (0.0115) (0.0002)
KP

3,· 0 0 0.2717 0.0073 Σ3,3 0.0183

(0.2361) (0.0177) (0.0003)

Table 2: Estimated Parameters in the Preferred AFNS Model

The estimated parameters for the mean-reversion matrix K
P, the mean vector θ

P, and the volatility matrix

Σ in the AFNS model preferred according to the BIC. The Q-related parameter is estimated at λ = 0.3861

(0.0012). The maximum log likelihood value is 217,247.3. The numbers in parentheses are the estimated

standard deviations.
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Figure 1: 5yr5yr Real Yield Decomposition

model with diagonal KP matrix, which seems reasonable given that only the off-diagonal κP13

parameter separates the two models.

Figure 1 shows the 5yr5yr real yield decomposition implied by the preferred AFNS model.

Its estimate of the natural real rate r∗t is stable with persistent fluctuations around zero. As

a result, the model implies that the lower trend in the 5yr5yr real yield is driven by declines

in the 5yr5yr real term premium.

To examine the sensitivity of the estimated r∗t from the preferred AFNS model to the

specification of the KP matrix, we consider the AFNS models with unrestricted and diagonal
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Figure 2: Sensitivity of r∗ Estimate to KP Specification

KP matrix. The resulting r∗t estimates are shown in Figure 2 where we note that the estimates

are indeed very sensitive to this choice. This underscores the importance of going through a

careful model selection procedure like the one described above.
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B Sensitivity of Estimated State Variables to Data Frequency

In this appendix, we examine the sensitivity of the estimated state variables within the AFNS-

R model to the data frequency. To do so, we focus on the most parsimonious specification of

the model with diagonal KP mean-reversion matrix and diagonal Σ volatility matrix estimated

at daily, weekly, monthly, and quarterly frequency, respectively.
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Figure 3: Estimated State Variables: Data Frequency

Illustration of the estimated state variables from the AFNS-R model when estimated using daily,

weekly, monthly, and quarterly data.

Figure 3 shows the estimated paths for all four state variables from the four estimations.
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We note that, due to the limited number of observed bond prices in the early years of our

sample, all state variables are not fully identified during that period. As a consequence, we do

see some differences in the filtered state variables depending on the frequency of the data used

in the model estimation. Importantly, though, the dominating level factor is well identified

and its filtered path is insensitive to the data frequency. Moreover, roughly starting in 2012

the filtered paths for the frictionless level, slope, and curvature factors become insensitive to

the data frequency thanks to the sufficiently large number of observed bond prices during

the remaining part of the sample. Furthermore, we do see some differences in the estimated

bond-specific risk factor XR
t depending on the data frequency even after 2012. However,

these differences do not translate into differences in the average estimated bond-specific risk

premium series during the last ten years of our sample as demonstrated in Figure 12 in the

main text. Finally and most importantly, we stress that it follows from Figure 18 in the main

text that the r∗t estimates from our preferred AFNS-R model estimated at different data

frequencies are very similar and all exhibit the same trending patterns. Hence, the crucial r∗t

output for our analysis has little sensitivity to the data frequency used, which supports our

choice to focus on the highest possible daily data frequency for our analysis.
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C Sensitivity of Estimated State Variables to Data Cutoff

In this appendix, we examine the sensitivity of the estimated state variables within the AFNS-

R model to the data cutoff used in the model estimation. To do so, we focus on the preferred

AFNS-R model identified in Section 5.2 in the main text. We estimate this model with no

cutoff (i.e. 0 months) as well as a cutoff of 6 months, 18 months, 24 months, and 30 months

as an alternative to our benchmark choice of using a 12-month cutoff.

Figure 4 shows the estimated paths for all four state variables from the six estimations.

In general, the state variables have relatively little sensitivity to the cutoff choice. As a

consequence, the sensitivity of our r∗t estimate to this implementation choice is also relatively

modest as demonstrated in Section 5.3 in the main text.
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Figure 4: Estimated State Variables: Data Cutoff

Illustration of the estimated state variables from the AFNS-R model when estimated with varying data

cutoff choices ranging from censoring with zero months to maturity up to censoring with 30 months

to maturity.
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